再训练机器学习 更多内容
  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,执行模型部署的操作。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    先修改以下命令中的参数,复制执行。 # 单机执行命令为:sh demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh demo.sh localhost 1 0 单机如需指定训练卡数训练可使用ASCEND_RT_

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 修改超参值后,启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-

    来自:帮助中心

    查看更多 →

  • 预训练任务

    nizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,启动训练脚本。Llama2-70B建议为8机64卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或 本地服务器 进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    size)流水线模型并行策略,具体详细参数配置如表2所示。 步骤3 启动训练脚本 修改超参值后,启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

  • ModelArts计费模式概述

    ModelArts价格详情。 包年/包月:一种预付费模式,即先付费使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。 按需计费:一种后付费模式,即先使用付费,按照ModelArts计算资源的实际使用时长计费,秒级计费,

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    先修改以下命令中的参数,复制执行。 # 单机执行命令为:sh demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh demo.sh localhost 1 0 单机如需指定训练卡数训练可使用ASCEND_RT_

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了