AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    训练集机器学习 更多内容
  • SFT全参微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的样

    来自:帮助中心

    查看更多 →

  • 预训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的

    来自:帮助中心

    查看更多 →

  • 创建图像分类项目

    可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • ModelArts

    如何查看ModelArts消费详情? 更多 自动学习 自动学习生成的模型,存储在哪里?支持哪些其他操作? 在ModelArts中图像分类和物体检测具体是什么? 自动学习训练后的模型是否可以下载? 自动学习项目中,如何进行增量训练? 更多 训练作业 ModelArts中的作业为什么一直处于等待中?

    来自:帮助中心

    查看更多 →

  • 准备SDC算法

    1~2位 1~2位 1~2位 承载内容 特性 特性子集 承载发布的顺序号以及需要显式表达的属性(扩展属性标识) 编号升级规则 当版本发生了重大的特性或者架构变更时,大版本号需要升级。 为快速响应客户需求,分步骤实现大版本号规划的特性,每个小版本号实现一个特性子集。 每一次发布Update版本,发布序列号增加1。

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    PU Share等特性的支持,进一步提升kubeflow批量训练和推理的效率。 实现典型分布式AI训练任务 下面将展示如何基于Kubeflow和Volcano,并使用MNIST数据轻松的完成数字图像分类模型的分布式训练。 登录CCE控制台,单击集群名称进入一个集群。 在CCE集群上部署Volcano环境。

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    在微调工作流的“数据准备”环节选择数据。 从本地上传 在“从本地上传”处,单击“点击上传”,选择本地编排好的训练数据。 数据上传成功后,页面会有提示信息。 此时AI Gallery会自动新建一个数据,单击提示信息处的“查看”可以进入数据详情页,也可以在“我的Gallery > 数据 > 我创建的数据集”进入数据集详情页查看。

    来自:帮助中心

    查看更多 →

  • 模型训练

    train_good_data:设置为无故障硬盘训练数据,经过特征处理后生成的数据,对应数据实例“Train_good_FE”。 test_good_data:设置为无故障硬盘测试数据,经过特征处理后生成的数据,对应数据实例“Test_good_FE”。 train_

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 AlpacaStyleInstructionHandler:使用

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    75 1.5 训练相关概念 表2 训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成

    来自:帮助中心

    查看更多 →

  • 模型训练

    取数据相关的超参,包括训练数据实例、测试数据实例等。数据超参支持输入多个,可以通过“增加”和图标,来增加或删除运行超参。 详细SDK说明,请在模型训练服务首页右下角的浮框中,依次单击“帮助中心 > SDK文档”查看。 当前算法已预置训练及测试数据,可使用默认值训练。 超参配置

    来自:帮助中心

    查看更多 →

  • 编辑代码(简易编辑器)

    :重命名调试文件、推理文件等文件。 :删除文件或文件夹。 :刷新代码目录。 数据目录:包含数据文件夹及数据实例。系统支持通过Spread编辑器打开csv文件,支持用户在训练工程编辑界面打开数据实例。 任务目录:包含联邦学习训练工程已经执行及正在执行的训练任务存储目录结构。包括codes文件、log文件、meta文件、model文件等。

    来自:帮助中心

    查看更多 →

  • 创建物体检测项目

    可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 创建文本分类项目

    对项目的简要描述。 “数据” 可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 模型训练

    单击新增cell左侧的图标,加载两份higgs数据分别作为训练和测试,如图3所示。 图3 加载训练 单击界面右上角的图标,选择“数据处理 > 数据 > 加载数据”。 新增“加载数据”内容。设置如下参数取值,其余参数保持默认值即可。 数据:从下拉框中选择“higgs”。 数据实例:从下拉框中选择“higgs_train_10k”。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    预测中空间网格的大小。根据训练数据和业务需求,自行定义模型水平分辨率,取值>0。 数据配置 训练数据 选择数据集中已发布的数据,这里数据需为再分析类型数据,同时需要完成加工作业。 训练 选择训练数据中的部分时间数据,训练数据尽可能多一些。 验证 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    用子账号进行创建的,需要参考配置CCE集群子账号权限。 创建可信联邦学习训练型作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。

    来自:帮助中心

    查看更多 →

  • 数据集版本不合格

    数据版本不合格 出现此问题时,表示数据版本发布成功,但是不满足自动学习训练作业要求,因此出现数据版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    lassification、kmeans。 attribute_list 枚举训练模型的输入列名。 取值范围:字符型,需要符合数据属性名的命名规范。 attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。

    来自:帮助中心

    查看更多 →

  • demo.sh方式启动(历史版本)

    qwen2_vl系列,数据为多模态数据,如果前面步骤已配置请忽略。具体配置如下: 数据dataset配置: dataset: mllm_demo,identity 否,忽略此步骤,执行下一步。 如需其他配置参数,可参考表1按照实际需求修改。 步骤三:启动训练脚本 修改完yaml配

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了