AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    稀疏模型机器学习 更多内容
  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这些模型可以将不同类型的数据进行融合和联合分析,从而实现更全面的理解和更准确的预测。多模态模型的应用非常广泛

    来自:帮助中心

    查看更多 →

  • 创建模型

    创建模型 在Fabric部署推理服务的时候除了使用公共模型,用户也可以自己创建模型。用户可以在Fabric模型页面创建模型,这些模型是属于用户个人,其他用户不可见。 约束与限制 创建模型的通用约束如下: 需要是Fabric支持的基模型,否则不支持,基模型列表如下: 表1 基模型列表

    来自:帮助中心

    查看更多 →

  • 功能介绍

    北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • COST04-02 主动监控成本

    成本趋势,避免异常发生。 相关服务和工具 创建预算提醒,将预算设置为提醒阈值,在预测或实际成本超出预算时,及时获取超预算通知,防止潜在成本超支。 创建成本监控,华为云成本中心的成本监控引入机器学习,对客户历史消费数据进行建模,对于不符合历史数据模型的成本增长,识别为异常成本记录,

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • COST02-01 建立云预算与预测流程

    张)的预测,可以有效改进并提升企业的财务预测准确率。 相关服务和工具 使用成本中心的成本分析,可以根据客户的历史支出预测未来时间范围的成本。成本分析的成本和使用量预测,会参考不同的计费模式特征,结合机器学习和基于规则的模型来分别预测所有消费模式的成本和使用量。 使用成本分析确定基

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    转换逻辑模型为物理模型 功能介绍 转换逻辑模型为物理模型,转换成功则显示转换后的目标模型信息。 异常:目标模型信息的“id”等属性为null时,则需要调用《获取操作结果》接口查看具体报错信息:GET https://{endpoint}/v1/{project_id}/design/operation-results

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习、深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 模型测试

    单击界面左下角的“异常检测模型测试”,弹出“异常检测模型测试”代码框,如图3所示。 “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 发布模型

    发布模型 逻辑实体创建完成后,必须创建对应的物理实体,才可以发布逻辑模型。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据建模”。 在左侧导航中,单击展开分层,选择一个分层。 在需要发布的逻辑实体对应的“操作”列下,单击>。 在“提示”对话框中单击“确认”。 在“确认”对话框中单击“确定”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列的信息。 任务系统参数:展示训练任务的配置参数信息。 创建联邦学习训练任务(WebIDE) 返回“模型训练”菜单界面,单击联邦学习工程所在行,进入工程详情界面。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型包 编辑模型包 上架模型包至AI市场 发布推理服务 模型包完整性校验 父主题: 用户指南

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了