中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习训练数据 更多内容
  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题:

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    相关服务 交互功能 数据湖探索 数据湖探索(Data Lake Insight,简称 DLI )用于推荐系统的离线计算和近线计算。DLI的更多信息请参见《数据湖探索文档》。 对象存储服务 对象存储服务(Object Storage Service,简称OBS)存储RES的推荐数据源,实现安全

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:[pt、sft、rm、ppo、dpo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练,dpo代表DPO训练。 finetuning_type

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    设置在并行训练中,每个微批次包含的数据批量大小,适当的数据批量大小能够确保训练各个阶段都能充分利用计算资源,提升并行效率。 数据配置 训练数据 选择训练模型所需的数据集。要求数据集经过发布操作,发布数据集操作方法请参见发布数据集。 资源配置 计费模式 选择训练模型所需的训练单元。 当前展示的完成本次训练所需要的最低训练单元要求。

    来自:帮助中心

    查看更多 →

  • 训练过程读取数据

    训练过程读取数据 在ModelArts上训练模型,输入输出数据如何配置? 如何提升训练效率,同时减少与OBS的交互? 大量数据文件,训练过程中读取数据效率低? 使用Moxing时如何定义路径变量? 父主题: Standard训练作业

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    ed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    t9处理器的AI训练 服务器 ,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    指令监督微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    相关服务 交互功能 数据湖探索 数据湖探索(Data Lake Insight,简称DLI)用于推荐系统的离线计算和近线计算。DLI的更多信息请参见《数据湖探索文档》。 对象存储服务 对象存储服务(Object Storage Service,简称OBS)存储RES的推荐数据源,实现安全

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    训练轮数是指需要完成全量训练数据训练的次数。训练轮数越大,模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致过拟合;训练轮数越小,模型学习数据的迭代步数就越少,过低则会导致欠拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    一站式IDE模型训练环境。 模型训练提供如下功能: 新建模型训练工程:支持用户在线编辑并调试代码,基于编译成功的代码对模型训练工程的数据集进行训练,输出训练报告。用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    ed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    ed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type

    来自:帮助中心

    查看更多 →

  • 修订记录

    更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了