AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习链路预测 更多内容
  • 可信智能计算服务 TICS

    租户作为合作方参与联邦计算。若需启用区块审计服务,请先完成启用区块审计服务(可选)中发起方角色涉及的操作,再创建空间。 已发布区域:北京四、北京二 组建空间 计算节点管理 同一个空间中的用户,在使用 可信计算 服务时(联邦分析和联邦机器学习),需要部署计算节点,接入己方数据,作为

    来自:帮助中心

    查看更多 →

  • 预测接口(排序)

    预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是

    来自:帮助中心

    查看更多 →

  • 日常风险预测

    比较指标值和阈值的关系。 比较关系分为>、>=、<、<= 2)智能预测:一种趋势预测方式,根据输入,基于算法预测未来容量趋势。 预测趋势:基于预测算法,根据参考时间段内(过去一个月)的容量趋势,预测未来7天的容量趋势; 风险实例:参考时间段内的容量和预测时间段内的容量,任何一个满足安全阈值,就认为是风险实例,会被输出到风险结果中。

    来自:帮助中心

    查看更多 →

  • 使用模型

    使用模型 用训练好的模型预测测试集中的某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试的图片 查看预测结果,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 方案概述

    品牌附加值低,利润低,议价权低 供应管理: 供应商的管理全靠主“盯”,不可控且人手不足;发生质量问题后,主埋单,无法有效追溯 供应商的质量数据、结果都线下产生,易篡改,真实性无法保障 没有客观的供应商质量能力评估平台,无法进行科学的管理 供应效率、敏捷性低,竞争力不足 通过本方案实现的业务效果:

    来自:帮助中心

    查看更多 →

  • 方案概述

    高性能纯国产底层求解能力:杉数科技成立近8年来,凭借定制化模型+算法求解能力,为大规模人工智能决策应用提供不可或缺的高效计算服务。 供应端到端一体化服务:覆盖企业经营的完整,模块之间松耦合,数据驱动加算法支撑,为企业未来生意增长提供核心助力。 多行业多场景覆盖:覆盖零售、制造、能源、电力等行

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 服务预测失败

    服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX

    来自:帮助中心

    查看更多 →

  • 预测的应用

    预测的应用 用户开通预测功能后,可以通过预测功能来估计未来时间内可能消耗的成本和用量,也可以根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。 查看预测数据 登录“成本中心”。 选择“成本洞察 > 成本分析”。 单击“新建自定义报告”。 设置周期。 按月查看预测数据

    来自:帮助中心

    查看更多 →

  • 关联预测(link

    关联预测(link_prediction)(1.0.0) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入起点ID。 String - - target 是 输入终点ID。 String - - 表2 response_data参数说明

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 方案概述

    传统管理偏重于一产,无法有效的实现一二三产全产业的提质增效; 传统种植标准不一致,导致产品一致性、品牌营销层次不齐; 农业农村数据资源分散、信息孤岛、数据壁垒和共享机制不健全,“资源不清、管理无序”; 海量涉农数据缺乏强大的算力支持,对数据的深度挖掘、行业赋能缺少支撑。 种植基地 资源

    来自:帮助中心

    查看更多 →

  • 服务预测请求体大小限制是多少?

    被拦截。 如果是从ModelArts console的预测页签进行的预测,由于console的网络的不同,此时要求请求体的大小不超过8MB。 因此,尽量避免请求体大小超限。如果有高并发的大流量推理请求,请提工单联系专业服务支持。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 在线服务预测时,如何提高预测速度?

    在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 应用场景

    APM提供大型分布式应用异常诊断能力,当应用出现崩溃或请求失败时,通过应用拓扑+调用下钻能力分钟级完成问题定位。 可视化拓扑:应用拓扑自发现,异常应用实例无处躲藏。 调用追踪:拓扑图中发现异常应用后,通过调用一键下钻,代码问题根因清晰可见。 慢SQL分析:提供数据库、SQL语句的调用

    来自:帮助中心

    查看更多 →

  • 创建预测分析自动学习项目时,对训练数据有什么要求?

    创建预测分析自动学习项目时,对训练数据有什么要求? 数据集要求 文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“c

    来自:帮助中心

    查看更多 →

  • 产品优势

    /VPN。 企业路由器支持路由学习,能够自动进行路由信息的更新和同步,当网络拓扑变更时,能够自动收敛,无需手工配置、变更繁琐的路由条目。 多联动 企业路由器使用BGP路由协议,实现多个接入之间的联动,多可以做负载分担或者互为主备,单故障秒级切换,打造高可靠网络,保障业务的连续性。

    来自:帮助中心

    查看更多 →

  • 分子属性预测

    分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了