中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    少量数据机器学习 更多内容
  • CREATE MODEL

    枚举训练模型的输入列名。 取值范围:字符型,需要符合数据属性名的命名规范。 attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。

    来自:帮助中心

    查看更多 →

  • 对话机器人SDK简介

    对话机器人SDK简介 对话机器人概述 对话机器人服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要包括智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库的智能问答系统。 对话机器人服务端SDK是对服务提供的REST

    来自:帮助中心

    查看更多 →

  • 图解对话机器人

    图解对话机器

    来自:帮助中心

    查看更多 →

  • 智能问答机器人简介

    问答诊断 当问答机器人上线运营期间,您可以通过“问答诊断”功能,查看机器人对用户问题的分词、排序、答复过程,基于调试结果,对已有的知识库、词典、数据标注或模型进行优化。 基础版机器人不支持问答诊断。 问答诊断 运营面板 您可以通过问答数据总览功能定期查看机器人的统计数据:问答统计、访问统计、热点问题、关键词统计。

    来自:帮助中心

    查看更多 →

  • 添加问答型对话机器人

    添加问答型对话机器人 问答型对话机器人可根据用户的具体问题给出具体答案,回答的内容更基于知识而不是用户目的。 在添加问答型对话机器人时,您需要事先增加问答组,问答组与任务机器人中的领域效果类似,用于专门解答特定业务的问题,例如咨询产品资费问题。 选择“配置中心>机器人管理>语义理解服务> 知识管理

    来自:帮助中心

    查看更多 →

  • 管理机器人测试用例

    管理机器人测试用例 前提条件 您已经参照配置一个预约挂号机器人(任务型对话机器人)完成流程和机器人的配置。 管理测试用例有什么用? 自动测试可以使运维人员使用自动测试文本来批量测试对话,来验证机器人的回复是否满足预期,减少验证语料是否正确的工作量。 操作步骤 选择“配置中心>机器

    来自:帮助中心

    查看更多 →

  • 创建智能问答机器人

    问答机器人。 步骤1:购买机器人 步骤2:新建语料 步骤3:对话体验 步骤4:调用问答接口 步骤5:问答机器人运营 步骤1:购买机器人 在使用智能问答机器人之前,您需要登录CBS管理控制台购买问答机器人。购买完成后,您可以通过问答机器人列表,查看机器人信息。刚购买的问答机器人状态为创建中,创建成功后状态为可用。

    来自:帮助中心

    查看更多 →

  • 对话机器人服务CBS

    对话机器人服务CBS 用户可通过调用该接口与机器人进行会话,包含“问答机器人”、“热点问题统计”等执行动作。 连接参数 对话机器人服务CBS连接器使用IAM认证,连接参数说明如表1所示。 表1 连接参数说明 名称 必填 说明 示例值/默认值 连接名称 是 设置连接名称。 问答机器人的连接

    来自:帮助中心

    查看更多 →

  • 自动学习的每个项目对数据有哪些要求?

    自动学习的每个项目对数据有哪些要求? 图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果

    来自:帮助中心

    查看更多 →

  • 钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端?

    钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端? 钉钉机器人、钉钉企业内部机器人、飞书机器人和企业微信机器人在添加订阅时,输入的订阅终端地址获取方式如下。 钉钉机器人 在钉钉的群设置中选择“智能群助手”,添加机器人时选择“自定义”,创建完成后即可获得w

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    项目是基于容器和Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布和管理平台。它利用了云原生技术的优势,让用户更快速、方便地部署、使用和管理当前最流行的机器学习软件。 目前Kubeflow 1.0版本已经发布,

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    ,会根据数据和模型结果进行多轮的实验迭代。算法工程师会根据数据特征以及数据的标签做多样化的数据处理以及多种模型优化,以获得在已有的数据集上更好的模型效果。传统的模型交付会直接在实验迭代结束后以输出的模型为终点。当应用上线后,随着时间的推移,会出现模型漂移的问题。新的数据和新的特征

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 订单支付完成后,点击“返回我的云市场”,回到“我的微认证”个人中心,进行对应微认证学习。如图1。 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的微认证”,进行对应微认证学习。如图2。 图2 进入课程学习-我的微认证

    来自:帮助中心

    查看更多 →

  • 执行横向联邦学习作业

    执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 获取横向联邦学习作业详情

    获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 使用Moodle搭建在线学习系统

    使用Moodle搭建在线学习系统 应用场景 Moodle是一个面向全球用户的开源在线教育系统,它被用于在线学习等场景。Moodle应用镜像基于Ubuntu 22.04操作系统,采用Docker部署,已预装Moodle应用以及其需要的运行环境。本节介绍如何安装部署Moodle应用。

    来自:帮助中心

    查看更多 →

  • 自动学习/Workflow计费项

    存储费用:自动学习作业的数据通过 对象存储服务 (OBS)上传或导出,存储计费按照OBS的计费规则。 综上,运行自动学习作业的费用 = 计算资源费用(2.43 元) + 存储费用 示例:使用专属资源池运行自动学习作业。计费项:标准存储费用 假设用户于2023年4月1日创建了自动学习的图像分

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了