中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    机器学习海量数据 更多内容
  • FPGA加速型

    选择。 机器学习机器学习中多层神经网络需要大量计算资源,其中训练过程需要处理海量数据,推理过程则希望极低的时延。同时机器学习算法还在不断优化中, FPGA以其高并行计算、硬件可编程、低功耗、和低时延等优势,可针对不同算法动态编程设计最匹配的硬件电路,满足机器学习海量计算和极

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、组件和URL跟踪等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据J

    来自:帮助中心

    查看更多 →

  • 学习项目

    别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • ModelArts

    从0-1制作 自定义镜像 并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类 文本分类 操作指导 准备数据 创建项目 数据标注 自动训练 部署上线 07

    来自:帮助中心

    查看更多 →

  • Spark应用开发简介

    发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data Mining):在海量数据基础上进行复杂的挖掘分析,可支持各种数据挖掘和机器学习算法。

    来自:帮助中心

    查看更多 →

  • 产品概述

    业务调用数据、服务存量数据、调用的KPI数据等应用指标。 Istio网格:集成Kubernetes平台通过非侵入方式采集业务调用数据、资源信息、调用的KPI数据等应用指标。 支持亿级调用链业务吞吐,无惧流量凶猛,为用户体验保驾护航。 AI智能阈值检测,机器学习历史基线数据产生告警,通过RCA(Root

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 测试机器人

    测试机器人 操作步骤 选择“配置中心>机器人管理>流程配置”,进入流程配置界面。 选择“智能机器人”。在需要测试的接入码最后一列单击“呼叫测试”。 在弹出的测试对话窗口中单击“开始呼叫”,开始测试机器人。 图1 测试机器人 父主题: 配置一个预约挂号机器人(任务型对话机器人)

    来自:帮助中心

    查看更多 →

  • 配置机器人跟踪

    配置机器人跟踪 前提条件 存在已发布的IVR流程且配有转移图元。 操作步骤 以租户管理员角色登录AICC,选择“配置中心 > 机器人管理>流程配置 ”,进入管理界面。 选择“系统管理>系统设置”界面,选择跟踪设置页签。 机器人跟踪单击“”,进入机器人跟踪配置页面。 选择机器人接入码,单击“确定”,接入码配置完成。

    来自:帮助中心

    查看更多 →

  • 如何删除机器人

    如何删除机器人 包周期版本机器人 对于包周期计费的智能问答机器人,可执行“退订”操作。 登录对话机器人服务管理控制台。 在控制台中选择“费用与成本”。 进入费用中心页面,在左侧导航栏中选择“订单管理 > 退订与退换货”。 图1 退订与退换货 在“退订使用中的资源”列表中,选择需要退订的机器人,执行退订操作。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了