GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    人工智能训练gpu 更多内容
  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • 训练作业性能降低

    训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(

    来自:帮助中心

    查看更多 →

  • 历史待下线案例

    Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作 自定义镜像 并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MindSpore+Ascend) 使用ModelArts

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU单机多卡训练任务

    前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的公共规格

    flavor_type 否 String 查询训练作业规格的类型,不填为查询所有。枚举值: CPU GPU Ascend 请求参数 无 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 total_count Integer 训练作业资源规格总数。 flavors Array

    来自:帮助中心

    查看更多 →

  • 训练环境中不同规格资源“/cache”目录的大小

    训练环境中不同规格资源“/cache”目录的大小 在创建训练作业时可以根据训练作业的大小选择资源。 ModelArts会挂载硬盘至“/cache”目录,用户可以使用此目录来储存临时文件。“/cache”与代码目录共用资源,不同资源规格有不同的容量。 k8s磁盘的驱逐策略是90%,

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    1-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • Lite Server

    04内核自动升级? 哪里可以了解Atlas800训练 服务器 硬件相关内容 使用GPU A系列裸金属服务器有哪些注意事项? GPU A系列裸金属服务器如何更换NVIDIA和CUDA?

    来自:帮助中心

    查看更多 →

  • Open-Sora 1.0基于DevServer适配PyTorch NPU训练指导(6.3.905)

    2.py GPU和NPU训练脚本中的参数要保持一致,除了参数dtype。NPU环境下,dtype="fp16",GPU环境下,dtype="bf16"。 基于NPU训练后的权重文件和GPU训练后的权重文件,对比推理精度。推理精度对齐流程和训练精度对齐流程相同,先在GPU固定推理的随机数。

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    kubectl delete -f tf-mnist.yaml 使用GPU训练 TFJob可在GPU场景下进行,该场景需要集群中包含GPU节点,并安装合适的驱动。 在TFJob中指定GPU资源。 创建tf-gpu.yaml文件,示例如下: 该示例的主要功能是基于Tensorflo

    来自:帮助中心

    查看更多 →

  • 查询训练作业详情

    training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 kind String 训练作业类型。默认使用job。枚举值: job 训练作业。 metadata JobMetadata

    来自:帮助中心

    查看更多 →

  • CUDA和CUDNN

    CUDA和CUDNN Vnt1机型软件版本建议:gpu driver version : 440.95.01 gpu driver version : 440.95.01(GPU驱动在宿主机中安装,镜像中无需安装) cuda runtime version : 10.2(PyTorch自带,无需关心)

    来自:帮助中心

    查看更多 →

  • 查询训练作业列表

    参数类型 描述 url String 训练作业的JupyterLab地址。 token String 训练作业的JupyterLab token。 请求示例 查询训练作业。设置查询训练作业限制个数为1,查询作业名称中包含trainjob的所有训练作业数据。 POST https:/

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU多机多卡训练任务

    单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型E CS GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    eed的核心思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 终止训练作业

    training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 action_type 是 String 对训练作业的操作请求。参数值设置为terminate时,表示终止训练作业操作。 响应参数 状态码:

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 训练作业容错检查

    使用reload ckpt恢复中断的训练 在容错机制下,如果因为硬件问题导致训练作业重启,用户可以在代码中读取预训练模型,恢复至重启前的训练状态。用户需要在代码里加上reload ckpt的代码,使能读取训练中断前保存的预训练模型。具体请参见断点续训练。 父主题: 模型训练高可靠性

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了