GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    人工智能训练gpu 更多内容
  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    设备。 init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • 日志提示“cuda runtime error (10) : invalid device ordinal at xxx”

    _VISIBLE_DEVICES去设置,不用手动指定默认的。 如果发现资源节点中存在GPU卡损坏,请联系技术支持处理。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 查询训练作业详情

    training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 kind String 训练作业类型。默认使用job。枚举值: job 训练作业。 metadata JobMetadata

    来自:帮助中心

    查看更多 →

  • 查询训练作业列表

    参数类型 描述 url String 训练作业的JupyterLab地址。 token String 训练作业的JupyterLab token。 请求示例 查询训练作业。设置查询训练作业限制个数为1,查询作业名称中包含trainjob的所有训练作业数据。 POST https:/

    来自:帮助中心

    查看更多 →

  • 查询训练作业详情

    job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_info返回参数说明 参数 参数类型 描述 kind String 训练作业类型。默认使用job。

    来自:帮助中心

    查看更多 →

  • 创建训练任务

    资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择单GPU规格。 单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 创建GPU虚拟化应用 监控GPU虚拟化资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    ,在ModelArts Standard的训练环境中开展GPU的单机单卡、单机多卡、多机多卡分布式训练。 面向熟悉代码编写和调测的AI工程师,同时了解SFS和OBS云服务 从 0 制作 自定义镜像 并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU)

    从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_

    来自:帮助中心

    查看更多 →

  • Open-Sora 1.0基于DevServer适配PyTorch NPU训练指导(6.3.905)

    2.py GPU和NPU训练脚本中的参数要保持一致,除了参数dtype。NPU环境下,dtype="fp16",GPU环境下,dtype="bf16"。 基于NPU训练后的权重文件和GPU训练后的权重文件,对比推理精度。推理精度对齐流程和训练精度对齐流程相同,先在GPU固定推理的随机数。

    来自:帮助中心

    查看更多 →

  • 训练作业容错检查

    使用reload ckpt恢复中断的训练 在容错机制下,如果因为硬件问题导致训练作业重启,用户可以在代码中读取预训练模型,恢复至重启前的训练状态。用户需要在代码里加上reload ckpt的代码,使能读取训练中断前保存的预训练模型。具体请参见断点续训练。 父主题: 模型训练高可靠性

    来自:帮助中心

    查看更多 →

  • CUDA和CUDNN

    CUDA和CUDNN Vnt1机型软件版本建议:gpu driver version : 440.95.01 gpu driver version : 440.95.01(GPU驱动在宿主机中安装,镜像中无需安装) cuda runtime version : 10.2(PyTorch自带,无需关心)

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型E CS GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速 云服务器 GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速 服务器 无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 计费说明

    计费说明 计费项 模型训练服务按照用户选择的实例规格和使用时长计费。计费项包括模型训练环境和云上推理服务,如表1所示。 表1 计费项 计费项 计费说明 模型训练服务 模型训练服务根据CPU和GPU的规格和使用时长进行计费,不使用则不产生费用。 当模型训练服务开始启动以后,实例处于

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了