GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    人工智能训练gpu 更多内容
  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • GPU加速型

    计算加速型P2vs 计算加速型P2s(主售) 计算加速型P2v 计算加速型P1 推理加速型Pi2(主售) 推理加速型Pi1 相关操作链接: 适用于GPU加速实例的镜像列表 GPU加速型实例安装GRID驱动 GPU加速型实例安装Tesla驱动及CUDA工具包 表1 GPU加速实例总览 类别 实例

    来自:帮助中心

    查看更多 →

  • 最佳实践

    制作 自定义镜像 并用于训练(Pytorch+CPU/GPU):本案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPU或GPU。 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU):本案例

    来自:帮助中心

    查看更多 →

  • 查看训练作业资源占用情况

    查看训练作业资源占用情况 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单击“资源占用情况”页签查看计算节点的资源使用情况,最多可显示最近三天的

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自

    来自:帮助中心

    查看更多 →

  • 训练作业的自定义镜像制作流程

    训练作业的自定义镜像制作流程 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 制作流程 图1

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU训练任务的场景介绍

    在ModelArts Standard上运行GPU训练任务的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。 ModelArts

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard运行GPU训练任务的准备工作

    在ModelArts Standard运行GPU训练任务的准备工作 使用ModelArts Standard的专属资源池训练时,需要完成以下准备工作。 购买服务资源 表1 购买服务资源 服务 使用说明 参考文档 弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU单机多卡训练任务

    前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    1-cudnn7-ubuntu18.04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0

    来自:帮助中心

    查看更多 →

  • 如何查看训练作业资源占用情况?

    如何查看训练作业资源占用情况? 在ModelArts管理控制台,选择“模型训练>训练作业”,进入训练作业列表页面。在训练作业列表中,单击目标作业名称,查看该作业的详情。您可以在“资源占用情况”页签查看到如下指标信息。 CPU:CPU使用率(cpuUsage)百分比(Percent)。

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    DataParallel进行单机多卡训练的优缺点 代码简单:仅需修改一行代码。 通信瓶颈 :负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负责reducer的GPU需要负责汇总输出、计算损失和更新权重,因此显存和使用率相比其他GPU都会更高。 D

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    GPT-2基于Server适配PyTorch GPU训练推理指导 场景描述 本文将介绍在GP Ant8裸金属 服务器 中,使用Megatron-Deepspeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-Deepspeed

    来自:帮助中心

    查看更多 →

  • 训练作业性能降低

    训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型E CS GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 训练速度突然下降以及执行nvidia-smi卡顿如何解决?

    D+进程 此时可以观察你的训练任务或者执行“nvidia-smi”等命令,几乎是卡顿无法执行,因为内核IO已经阻塞, 无法执行相关GPU命令,只能尝试释放D+进程。 处理方法 “nvidia-smi”是一个NVIDIA GPU监视器命令行工具,用于查看GPU的使用情况和性能指标,可以帮助用户进行GPU优化和故障排除。

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    1-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 云服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了