GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    人工智能训练gpu 更多内容
  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU单机单卡训练作业

    前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    CUDA in forked subprocess” 训练作业找不到GPU 日志提示“RuntimeError: CUDA error: an illegal memory access was encountered” 父主题: 训练作业

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 大数据分析

    r)同时执行更多的策略,缩短模拟时间。而凭借竞享实例的强劲性能(全系C类型)该引擎训练一天相当于人类玩家打10万年。 图1 人工智能应用架构图 Learner:学习集群,一般是多个GPU显卡组成训练集群 Actor:采用竞享实例提供CPU,每个线程作为一个AI玩家,用于测试策略的执行效果

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 查看训练作业资源占用情况

    查看训练作业资源占用情况 约束限制 训练作业的资源占用情况系统会自动保存30天,过期会被清除。 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU训练作业的场景介绍

    在ModelArts Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。 ModelArts

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • 准备GPU资源

    准备GPU资源 本文介绍如何在使用GPU能力前所需要的基础软件、硬件规划与准备工作。 基础规划 配置 支持版本 集群版本 v1.25.15-r7及以上 操作系统 华为云欧拉操作系统 2.0 系统架构 X86 GPU类型 T4、V100 驱动版本 GPU虚拟化功能仅支持470.57

    来自:帮助中心

    查看更多 →

  • 创建GPU应用

    com/gpu 指定申请GPU的数量,支持申请设置为小于1的数量,比如 nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 指定nvidia.com/gpu后,在调度时不会将负载调

    来自:帮助中心

    查看更多 →

  • 监控GPU资源

    监控GPU资源 本章介绍如何在UCS控制台界面查看GPU资源的全局监控指标。 前提条件 完成GPU资源准备。 当前本地集群已创建GPU资源。 当前本地集群开启了监控能力。 GPU监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择对应的集群并开启监控,详细操作请参照集群开启监控。

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下: 图1 单机多卡数据并行训练 代码改造点 模型分发

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    监控GPU资源指标 通过Prometheus和Grafana,可以实现对GPU资源指标的观测。本文以实际示例介绍如何通过Prometheus查看集群的GPU显存的使用。 本文将通过一个示例应用演示如何监控GPU资源指标,具体步骤如下: 访问Prometheus (可选)为Prom

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启云服务器,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    /checkpoints/gpt2 图6 模型checkpoint 步骤3 单机多卡训练 和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属服务器是8卡, 因此需要在预训练脚本中调整如下参数: GPUS_PER_NODE=8 调整全局批处理大小(global

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard运行GPU训练作业的准备工作

    在ModelArts Standard运行GPU训练作业的准备工作 使用ModelArts Standard的专属资源池训练时,需要完成以下准备工作。 购买服务资源 表1 购买服务资源 服务 使用说明 参考文档 弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长

    来自:帮助中心

    查看更多 →

  • 最佳实践

    制作 自定义镜像 并用于训练(Pytorch+CPU/GPU):本案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPU或GPU。 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU):本案例

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了