AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    强化学习和机器学习 更多内容
  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    ,不用进行强化学习,也可以准确判断学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    设置语义识别图元 单击语义识别图元最后一个机器人回复图元的连线,选择分支条件。 图7 设置分支 单击最后一个机器人回复图元,设置其回复模板,与第一个相同。 单击画布上方的“”保存。 单击画布上方的“”,在弹出的发布页面单击“”。 选择“机器人管理>流程配置>智能机器人”页面,单击“”按钮,将流程接入码与新增流程关联。

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    设置语义识别图元 单击语义识别图元最后一个机器人回复图元的连线,选择分支条件。 图7 设置分支 单击最后一个机器人回复图元,设置其回复模板,与第一个相同。 单击画布上方的“”保存。 单击画布上方的“”,在弹出的发布页面单击“”。 选择“机器人管理>流程配置>智能机器人”页面,单击“”按钮,将流程接入码与新增流程关联。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    ,不用进行强化学习,也可以准确判断学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 场景介绍

    ,不用进行强化学习,也可以准确判断学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 漫游调优

    量、引导成功次数/总次数、漫游前漫游后信号强度、终端画像数、上行下行速率等。 单击“查看详情”列中,可以查看该厂商漫游调优事件的详情,包括:漫游时间、用户MAC、用户名漫游结果等。 单击单个漫游事件前面的,可以查看此次漫游出详情、漫游入详情漫游过程途径AP信息。 功能约束说明

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    数据查询搜索条件,避免因查询搜索请求造成的数据泄露。 已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联

    来自:帮助中心

    查看更多 →

  • 概述

    “主机存储”“OBS存储”两种存储方式。前一种是指计算节点交互的数据存储在计算节点所在机器上,后一种是计算节点交互的数据存储在部署时选择的OBS桶中。 数据目录:计算节点部署时选择的存储路径,用于 TICS 服务的数据外部交互。用户只有在目录中放置数据集等文件,服务才能读取到;服

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练部署。 Mo

    来自:帮助中心

    查看更多 →

  • 如何对盘古大模型的安全性展开评估和防护

    如何对盘古大模型的安全性展开评估防护 盘古大模型的安全性主要从以下方面考虑: 数据安全隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理删除的各个环节,提供防篡改、数据隐私保护、加密、

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 大数据分析

    年,星际,Dota2,德州扑克等均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数验证集,参数估计、最大似然估计贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 方案概述

    。使模型开发训练过程更加便捷高效。 开源定制化 该解决方案是开源的,用户可以免费用于商业用途,并且还可以在源码基础上进行定制化开发。 一键部署 一键轻松部署,即可完成 函数工作流 FunctionGraph,对象存储服务 OBS等资源发放,帮助用户轻松搭建电池、电机、电控数据分析预测解决方案。

    来自:帮助中心

    查看更多 →

  • 方案概述

    。使模型开发训练过程更加便捷高效。 开源定制化 该解决方案是开源的,用户可以免费用于商业用途,并且还可以在源码基础上进行定制化开发。 一键部署 一键轻松部署,即可完成函数工作流 FunctionGraph,对象存储服务 OBS等资源发放,帮助用户轻松搭建汽车价值评估解决方案。

    来自:帮助中心

    查看更多 →

  • 华为机器翻译(体验)

    华为机器翻译(体验) 华为云自言语言处理服务机器翻译功能。机器翻译(Machine Translation,简称MT),为用户提供快速准确的翻译服务,帮助用户跨语言沟通,可用于文档翻译等场景中,包含“文本翻译”“语种识别”执行动作。 连接参数 华为机器翻译(体验)连接器无需认证,无连接参数。

    来自:帮助中心

    查看更多 →

  • 安全云脑的数据来源是什么?

    Anti-DDoS,AAD)、 Web应用防火墙 (Web Application Firewall,WAF)等安全防护服务上报的告警数据,从中获取必要的安全事件记录,进行大数据挖掘机器学习,智能AI分析并识别出攻击入侵,帮助用户了解攻击入侵过程,并提供相关的防护措施建议。 安全云脑通过对多方面的安全数据的分析,为

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    Anti-DDoS,AAD)、Web应用防火墙(Web Application Firewall,WAF)等安全防护服务上报的告警数据,从中获取必要的安全事件记录,进行大数据挖掘机器学习,智能AI分析并识别出攻击入侵,帮助用户了解攻击入侵过程,并提供相关的防护措施建议。 态势感知通过对多方面的安全数据的分析,为

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了