AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习正负样本比例 更多内容
  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    的能力。 在形成可用的训练数据前,需要对这些影像数据进行正负样本的手工分类,符合标准的影像作为模型训练中的正样本数据。实际操作中,我们通过对单个影像实例进行查看和对比,在界面上设置“AI训练”或“学习案例”,以标识出正样本。 专家经验库按不同采集来源的图片与视频进行分类,分为任务

    来自:帮助中心

    查看更多 →

  • 批量添加样本

    数据源所在路径。 data_type 否 Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1: GaussDB (DWS)服务 2: DLI 服务 3:RDS服务 4: MRS 服务 5:AI Gallery 6:推理服务 schema_maps 否 Array of SchemaMap

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 根据样本的ID列表批量删除数据集中的样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中的样本 from modelarts.session import Session from modelarts.dataset import

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 功能介绍 批量删除样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 最新动态

    样本对齐支持PSI算法 纵向联邦作业中支持对两方数据集进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机

    来自:帮助中心

    查看更多 →

  • 创建样本分布统计作业

    的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum( case when i.label > 0 then 1 else 0 end ) as positive_count, sum(

    来自:帮助中心

    查看更多 →

  • 水平正负柱图

    水平正负柱图 本章节主要介绍水平正负柱图组件各配置项的含义。 图1 水平正负柱图 样式 尺寸位置 图表尺寸:设置图表的宽和高。单位为px。 图表位置:设置图表在画布中的位置。单位为px。 全局样式 字体:设置图表中文字的字体。 柱子样式 柱子宽度:设置柱子的宽度。 柱子圆角度:设置柱子的圆角度。

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    000+00:00", "result_ext" : null } 状态码 状态码 描述 200 查询样本对齐结果成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细 标识AI训练/取消AI训练样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    响应Body参数 参数 参数类型 描述 sample_count Integer 样本数量。 samples Array of DescribeSampleResp objects 样本列表。 表4 DescribeSampleResp 参数 参数类型 描述 check_accept Boolean

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)

    来自:帮助中心

    查看更多 →

  • 管理样本库

    删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏中的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏中的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。

    来自:帮助中心

    查看更多 →

  • 新建固定比例外呼

    任务模板:可选择“配置中心>外呼任务>外呼模板管理”状态为“已发布”的固定比例外呼模板。 任务起止时间:任务开始时间和结束时间。 技能队列:选择已有的技能队列。技能队列配置可参考维护租间技能队列。 智能机器人:选择对应智能机器人。执行固定比例外呼时,智能机器人需要路由座席,与路由的座席生成接触记录,外呼结果才会定义为呼叫成功。

    来自:帮助中心

    查看更多 →

  • 产品功能

    询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了