AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习正负样本比例 更多内容
  • 分页查询智能任务列表

    任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运行总览页面,单击数据标注节点的“实例详情”进入数据标注页面,完成数据标注。 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。 模型将

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 团队标注的数据分配机制是什么?

    均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000张都是未标注,且5个都是labeler的话,那就是每个人分2000。 父主题:

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览,单击“数据标注”节点的“实例详情”进入“数据标注”页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • 创建数据集导出任务

    labeler String 标注人。 metadata SearchProp object 通过样本属性搜索。 parent_sample_id String 父样本ID。 sample_dir String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。

    来自:帮助中心

    查看更多 →

  • 数据优化

    碰撞后的数据分布不太均衡,负样本比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题: 使用 TICS 多方安全计算进行联合样本分布统计

    来自:帮助中心

    查看更多 →

  • 蛇行(Snake Driving)检测

    出现横向控制效果不佳导致的长时间车辆横向振荡。 蛇行检测的目的是判断车辆是否出现横向振荡,利用车辆的横向加速度的正负变化来判断蛇行是否发生。 正值大于和负值小于的比例都大于该时间段的10%时,则判断此时间段发生蛇行。 在及少数的连续S型弯道情况下,可能会出现假阳性结果,这会在评测报告中进行体现。

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    inf_output String 主动学习中推理的输出路径。 infer_result_output_dir String 样本预测结果输出OBS目录,可以不输入,默认使用output_dir目录下的{service_id}-infer-result子目录。 key_sample_output

    来自:帮助中心

    查看更多 →

  • 功能介绍

    译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • 查询团队标注的样本信息

    strings 样本的删除原因,用于医疗。 hard_details Map<String,HardDetail> 疑难详情,包括:疑难描述,疑难原因,疑难建议。 labelers Array of Worker objects 样本分配的标注人列表,记录这张样本分给了哪些团队成员,用于团队标注。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 查询数据集导出任务的状态

    labeler String 标注人。 metadata SearchProp object 通过样本属性搜索。 parent_sample_id String 父样本ID。 sample_dir String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。

    来自:帮助中心

    查看更多 →

  • DBE_COMPRESSION

    IN NUMBER, BLKCNT_CMP OUT INTEGER, BLKCNT_UNCMP OUT INTEGER, ROW_CMP OUT INTEGER, ROW_UNCMP OUT INTEGER, CMP_RATIO

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了