华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练目标归一化 更多内容
  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS

    ine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 产品术语

    订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习、深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 B 标签列 模型训练输出的预测值,对应数据集的一个特征列。例如鸢尾花分类建

    来自:帮助中心

    查看更多 →

  • GS

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    CREATE MODEL 功能描述 训练机器学习模型并保存模型。 注意事项 模型名称具有唯一性约束,注意命名格式。 AI训练时长波动较大,在部分情况下训练运行时间较长,设置的GUC参数statement_timeout时长过短会导致训练中断。建议statement_timeout设置为0,不对语句执行时长进行限制。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 Mo

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业创建失败

    自动学习训练作业创建失败 出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请联系华为云技术支持。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 查看训练任务详情与训练指标

    数据质量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能是目标任务的难度较大,或模型的学习率设置过小,导

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    轻量级深度学习:增加扩展问并使用该模型进行训练从而提高问答精准度,扩展问越多,效果提示越明显。 高级版、专业版、旗舰版机器人支持轻量级深度学习。 重量级深度学习:适用于对问答精准度要求很高的场景,扩展问越多,效果提升越明显。 旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    集成主流深度学习框架,包括PyTorch,TensorFlow,Jittor,PaddlePaddle等,内置经典网络结构并支持用户自定义上传网络,同时,针对遥感影像多尺度、多通道、多载荷、多语义等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很容易受到数据噪声的干扰,从而影响模型的鲁棒性。当目标任务的难度较大时,该问题将愈加显著。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了