AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练的结果 更多内容
  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人版本 智能问答机器人支持专业版、旗舰版两种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 专业版 旗舰版 管理问答语料 √ √ 实体管理 √ √ 问答模型训练 轻量级深度学习 √ √ 重量级深度学习 - √ 调用问答机器人 √ √ 问答诊断 √ √ 运营面板

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在智能问答机器人列表中,选择“操作”列“规格修改”。 图1 规格修改 依据使用需求修改机器规格。 图2 修改问答机器人规格 父主题: 智能问答机器

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    指按某种策略由已知判断推出新判断思维过程。人工智能领域下,由机器模拟人类智能,使用构建神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理批量作业。 昇腾芯片 昇腾芯片又叫

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    Kubeflow部署 Kubeflow诞生背景 基于Kubernetes构建一个端到端AI计算平台是非常复杂和繁琐过程,它需要处理很多个环节。如图1所示,除了熟知模型训练环节之外还包括数据收集、预处理、资源管理、特性提取、数据验证、模型管理、模型发布、监控等环节。对于一个

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见分类有3种: 监督学习:利用一组已知类别的样本调整分类器参数,使其达到所要求性能过程,也称为监督训练或有教师学习。常见有回归和分类。 非监督学习:在未加标签数据中,试图找到隐藏结构。常见有聚类。 强化学习:智能系统从环境到行为映射学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库智能问答机器人系统。 对话机器服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    训练文本分类模型 完成数据标注后,可进行模型训练。模型训练目的是得到满足需求文本分类模型。由于用于训练文本,至少有2种以上分类(即2种以上标签),每种分类文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注文本符合要求。 操作步骤 在新版自动学习页面,

    来自:帮助中心

    查看更多 →

  • 在ModelArts自动学习中,如何进行增量训练?

    为提升训练效果,建议在增量训练时,选择质量较高数据,提升数据标注质量。 增量训练操作步骤 登录ModelArts管理控制台,单击左侧导航栏自动学习。 在自动学习项目管理页面,单击对应项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型训练,得到预测分析模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功项目名称,查看当前工作流执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型自动训练。

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    Graph,DAG)开发。一个DAG是由节点和节点之间关系描述组成。开发者通过定义节点执行内容和节点执行顺序定义DAG。绿色矩形表示为一个节点,节点与节点之间连线则是节点关系描述。整个DAG执行其实就是有序任务执行模板。 图3 工作流 Workflow提供样例 Mod

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    precision:精确率 被模型预测为某个分类所有样本中,模型正确预测样本比率,反映模型对负样本区分能力。 accuracy:准确率 所有样本中,模型正确预测样本比率,反映模型对样本整体识别能力。 f1:F1值 F1值是模型精确率和召回率加权调和平均,用于评价模型好坏,当F1较高时说明模型效果较好。

    来自:帮助中心

    查看更多 →

  • 训练型横向联邦作业流程

    创建训练型横向联邦学习作业 配置作业执行脚本,训练模型文件。 执行脚本是每个参与方计算节点在本地会执行模型训练、评估程序,用于基于本地数据集训练子模型。 训练模型文件则定义了模型结构,会用于每个参与方在本地初始化模型。 图2 配置执行脚本、训练模型文件 配置已方、对方数据集。在作业数据集配置中

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    训练声音分类模型 完成音频标注后,可以进行模型训练。模型训练目的是得到满足需求声音分类模型。由于用于训练音频,至少有2种以上分类,每种分类音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型自动训练。 在新版自动学习页面,单击项目名称进入运

    来自:帮助中心

    查看更多 →

  • 构建微调训练任务

    给输出数据加噪音概率,定义了给输出数据加噪音概率。加噪音是一种正则化技术,它通过在模型输出中添加随机噪音来增强模型泛化能力。 取值范围:[0,1]。 给输出数据加噪音尺度 给输出数据加噪音尺度,定义了给输出数据加噪音尺度。这个值越大,添加噪音越强烈,模型正则化效果越强,但同时也可能会降低模型的拟合能力。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    最近一次模型训练执行的时间。 创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务描述信息,支持单击“”重新编辑。 切换到其他训练工程、联邦学习工程、训练服务或超参优化服务模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。

    来自:帮助中心

    查看更多 →

  • 应用场景

    API、缓存),以及被哪些外部调用所依赖。业务逻辑梳理、架构治理和容量规划(例如促销活动准备过程中,需要为每个应用准备多少台机器)也变得更加困难。 业务实现 APM提供大型分布式应用异常诊断能力,当应用出现崩溃或请求失败时,通过应用拓扑+调用链下钻能力分钟级完成问题定位。 可视化拓扑:应用拓扑自发现,异常应用实例无处躲藏。

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    目标任务难度较大,或者模型学习率设置得过小,导致模型收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习方式来解决。 图4 异常Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动原因可能是由于训练数据质量差,比如数据存在噪声或者分布

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能影响;(2)迭代次数对联邦学习模型分类性能影响;(3)参与方数据量不同时,本地独立训练对比横向联邦模型性能。 不同训练参数对模型准确率、训练时长影响 训练轮数对模型准确率影响(迭代次数固定为20)

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    训练图像分类模型 完成图片标注后,可进行模型训练。模型训练目的是得到满足需求图像分类模型。请参考前提条件确保已标注图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您数据集中已标注图片不低于100张。 请确保您数据集中至少存在2种以上图片分类,且每种分类的图片不少于5张。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了