AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    机器学习线性模型 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 最新动态

    LR纵向联邦学习主要用于具有线性边界的二分类问题,支持用户双方训练联合逻辑回归(LR)模型。相较于单方训练,纵向联邦LR训练覆盖用户双方特征,模型预测精度更高。 TICS 采用SEAL同态加密确保双方数据交互安全,通过批处理技术进一步提升联邦训练性能。 公测 创建纵向联邦学习作业 2 样本对齐支持PSI算法

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 异常检测

    于距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。 节点存储多个窗口的数据分布信息,能够检测数据分布变化。 异常检测和模型更新在同一个代码框架中完成。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 开发指南

    工人、各种生产机器等。 约束条件:解决问题过程中的约束条件,例如每台机器不能连续生产20小时,每个工人不能连续工作16小时等。 优化目标:待解决的问题目标,例如最大化生产利润、最低运营成本等。 优化求解 把问题的输入,即需求、资源、约束条件、求解目标用一定的数学模型表示出来,然后

    来自:帮助中心

    查看更多 →

  • GS

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应aiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • 使用pytorch进行线性回归

    使用pytorch进行线性回归 在FunctionGraph页面将torch添加为公共依赖 图1 torch添加为公共依赖 在代码中导入torch并使用 # -*- coding:utf-8 -*- import json # 导入torch依赖 import torch as t

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 数学优化求解器

    工人、各种生产机器等。 约束条件:解决问题过程中的约束条件,例如每台机器不能连续生产20小时,每个工人不能连续工作16小时等。 优化目标:待解决的问题目标,例如最大化生产利润、最低运营成本等。 优化求解 把问题的输入,即需求、资源、约束条件、求解目标用一定的数学模型表示出来,然后

    来自:帮助中心

    查看更多 →

  • 异常检测

    Tree最大高度。 12 seed 否 算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。 history

    来自:帮助中心

    查看更多 →

  • 使用TensorFlow进行线性回归

    reduce_sum(tf.keras.losses.mean_squared_error(y, y_)) grads = tape.gradient(loss, model.variables) optimizer = tf.keras.optimizers

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了