AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习特征工程 更多内容
  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • GS

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    Security Service,HSS)、DDoS高防(Advanced Anti-DDoS,AAD)、 Web应用防火墙 (Web Application Firewall,WAF)等安全防护服务上报的告警数据,从中获取必要的安全事件记录,进行大数据挖掘和机器学习,智能AI分析并识

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • Python和Spark开发平台

    Python和Spark开发平台 创建特征工程 数据采样 列筛选 数据准备 特征操作 Notebook开发 全量数据应用 发布服务 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    概述 FPGA加速云服务器(FPGA Accelerated Cloud Server,FA CS )提供FPGA开发和使用的工具及环境,让用户方便地开发FPGA加速器和部署基于FPGA加速的业务,为您提供易用、经济、敏捷和安全的FPGA云服务。 FPGA加速云服务器包括两类: 高性能架构

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    关联。 单击流程后的“呼叫测试”,输入“你好”,机器人回答“你好”。 您的“对话类型”选择“聊天机器人”,需要进行渠道配置。 选择“配置中心 > 接入配置>渠道配置”。 单击“新增”,在机器人配置中,开启机器人,可选择已发布的机器人。 当您的“对话类型”选择“语音导航”或“IVR流程”时,需要配置被叫路由。

    来自:帮助中心

    查看更多 →

  • 创建自定义场景

    近线排序策略用于对在线实时数据排序。如果使用在线排序模型,需在排序策略-近线特征工程中创建完成后才可以正常使用排序策略。 在“创建自定义场景”页面,进入“排序策略”页签,单击“添加近线排序策略”。 进行在线学习参数配置。 名称:自定义在线排序策略名称。 离线排序策略:从下拉框中选择已

    来自:帮助中心

    查看更多 →

  • 使用模型训练服务快速训练算法模型

    使用模型训练服务快速训练算法模型 本文档以硬盘故障检测的模型训练为例,介绍模型训练服务使用的全流程,包括数据集、特征工程、模型训练、模型管理和模型验证,使开发者快速熟悉模型训练服务。 操作流程 前提条件 订购模型训练服务 访问模型训练服务 创建项目 数据集 特征工程 模型训练 模型管理

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 数据集简介

    符、标题行。 :删除数据。 :对数据执行已有特征工程的操作流,并生成新的数据。特征工程操作请参见特征工程特征工程处理过的数据,不能再用相同的特征工程进行二次处理。 :使用当前数据创建新的特征工程。创建特征工程的方法请参见创建特征工程。 :跳转至“模型训练”页面。模型训练操作请参见模型训练。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 如何选中全量特征列?

    如何选中全量特征列? 使用Python和Spark开发平台创建的特征工程,在特征操作界面,单击表格左上方第一个带有倒三角标识的单元格即可。 使用JupyterLab开发平台创建的特征工程,在JupyterLab环境编辑区域分别运行“Import sdk”和“加载数据”代码框。运行

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了