特征点机器学习 更多内容
  • 概述

    存储方式:是指计算节部署时选择的存储方式,目前仅支持“主机存储”和“OBS存储”两种存储方式。前一种是指计算节交互的数据存储在计算节所在机器上,后一种是计算节交互的数据存储在部署时选择的OBS桶中。 数据目录:计算节部署时选择的存储路径,用于 TICS 服务的数据和外部交互。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    邦分析和联邦机器学习作业后,最终拿到结果。 计算节以容器的形式部署,支持云租户部署和边缘节部署,用户可根据数据源的现状,采用合适的计算节部署方案。 云租户部署:基于云容器引擎(CCE,Cloud Container Engine)服务部署,CCE提供高可靠高性能的企业级容器

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 筛选特征

    根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用TI CS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 最新动态

    联盟管理 计算节管理 3 联盟和计算节部署过程可视化 清晰展示联盟、计算节的部署、升级、回滚、删除步骤,在出现问题时便于分析排查。 公测 联盟操作可视化 计算节操作可视化 2021年1月 序号 功能名称 功能描述 阶段 相关文档 1 计算节支持生命周期管理 新增计算节上下线功能;支持计算节点规格变更,卸载等操作。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 特征操作

    列”节。 选择特征 特征操作支持选择并保留数据集中指定的特征列,删除其余特征列。操作步骤如下。 单击表头,选中需要执行的特征列。 单击“特征操作”,从下拉框中选择“选择特征”。 弹出“选择特征”对话框。检查“已选择特征”是否为用户选择的特征列。 单击“确定”。 在“特征操作流总览”区域会新增一个“选择特征”节点。

    来自:帮助中心

    查看更多 →

  • 特征画像

    特征画像 特征画像的作用,就是对数据进行分析,把其中一些基本特征提取出来,如:周期性、离散度、时序规律、最值、采样频率等,计算KPI曲线特(包括周期性、趋势性、噪声、离散性、随机性等)。根据计算的曲线特,判断KPI的大类别(毛刺型、阶梯型、周期型、离散型、稀疏型、多模态型等)

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    进入TICS控制台后,单击页面左侧“计算节管理”,进入计算节管理页面。 在“计算节管理”页面,查找需要发布数据的计算节名称,单击“计算节名称”进入计算节详情页。 图2 选择计算节 在“计算节详情”页,单击“前往计算节”,在登录页正确输入部署计算节时设置的“登录用户名”和“密码”。

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体

    来自:帮助中心

    查看更多 →

  • 特征工程

    。 图5 特征工程服务 单击“Publish”,将特征工程发布成服务。 发布成功后,会弹出成功提示框,单击“OK”。 在菜单栏中,单击“特征工程”,进入“特征工程管理”界面。 单击“已发布服务”页签,查看特征工程服务,如图6所示。 图6 特征工程服务 单击特征工程服务行对应“操作”列的图标。

    来自:帮助中心

    查看更多 →

  • 特征工程

    种,“V1”版本即数据按照原有格式存储,未做过分区处理。“V2”版本则会依照用户的分区设置做分区处理,当分区合理时,数据将均匀分布在各个节,有效利用Cloudtable的高并发特性,提升读写效率。其中“预分区数量”和“索引分区数量”可以根据数据量进行设置,如果读写性能达不到要求

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 全局特征信息文件

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了