组合购折上折

精选年度TOP场景组合,产品组合下单,享折上9折起!

 
 

    特征组合机器学习 更多内容
  • 提交排序任务API

    解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 筛选特征

    根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 概述

    特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 组合图

    组合组合图将柱状图和线状图结合在一起,支持双轴展示不同量级数据。如果您需要同时通过图表展示销售量(以柱状图表示)和销售额(以线状图表示),即使两者的数据量级相差很大,组合图也能够通过两个不同的坐标轴来清晰地展示这些信息,方便您一目了然地观察销售量的变化趋势和销售额的波动情况

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体

    来自:帮助中心

    查看更多 →

  • 组合架构

    组合架构 架构说明 图1 架构图例 作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TI CS 中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的 服务器 中进行机密计算。

    来自:帮助中心

    查看更多 →

  • 特征工程

    。 图5 特征工程服务 单击“Publish”,将特征工程发布成服务。 发布成功后,会弹出成功提示框,单击“OK”。 在菜单栏中,单击“特征工程”,进入“特征工程管理”界面。 单击“已发布服务”页签,查看特征工程服务,如图6所示。 图6 特征工程服务 单击特征工程服务行对应“操作”列的图标。

    来自:帮助中心

    查看更多 →

  • 特征工程

    行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存在该路径下。该路径不能包含中文。 因子分解机-FM 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。 表2 因子分解机参数说明 参数名称 说明 计算节点信息 用户可使用的计算资源种

    来自:帮助中心

    查看更多 →

  • 最新动态

    为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了