中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    机器学习如何训练数据 更多内容
  • 训练模型时引用依赖包,如何创建训练作业?

    训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install

    来自:帮助中心

    查看更多 →

  • 如何在训练中加载部分训练好的参数?

    如何训练中加载部分训练好的参数? 在训练作业时,需要从预训练的模型中加载部分参数,初始化当前模型。请您通过如下方式加载: 通过如下代码,您可以查看所有的参数。 from moxing.tensorflow.utils.hyper_param_flags import mox_flags

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细 标识AI训练/取消AI训练样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据J

    来自:帮助中心

    查看更多 →

  • 学习项目

    别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。

    来自:帮助中心

    查看更多 →

  • 功能总览

    华北-北京一 中国-香港 数据标注(可选) 发布测试 OBS 2.0支持 调用机器人 问答机器人面向客户的问答界面需要您根据自己业务需求进行开发,前台界面收到客户问题后,调用问答机器人的接口,并与机器人进行交互,最终将问答机器人返回的答案呈现给客户。交互的过程中,问答机器人会基于知识库配置

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    Summary数据可以直接传到开发环境的这个路径下/home/ma-user/work/,也可以放到OBS并行文件系统中。 Summary数据上传到Notebook路径/home/ma-user/work/下的方式,请参见上传本地文件至JupyterLab。 Summary数据如果是通过O

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。 在您需要的自动学习项目列

    来自:帮助中心

    查看更多 →

  • 智能问答机器人

    路数是什么?如何增加会话路数 是否支持提出一个问题得到多个回答 问答数据保留时间 如何修改机器人规格,不同版本机器人区别 如何删除机器人 智能问答机器人的回答规则是什么 如何查询机器人使用情况 如何使用问答语料导入模板 子账户导出数据受obs权限影响时怎么处理 新购买的机器人是否可以与旧机器人共享语料库

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 预训练

    个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。

    来自:帮助中心

    查看更多 →

  • 如何查看ModelArts中正在收费的作业?

    止因运行Workflow工作流而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 自动学习:自动学习运行时会收取费用,使用完请及时停止自动学习、停止因运行自动学习而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 Notebook实例: 运行中的N

    来自:帮助中心

    查看更多 →

  • 训练模型

    同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题:

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10

    来自:帮助中心

    查看更多 →

  • 产品术语

    统一、完善的数据治理体系。 数据资产 数据资产是指数据资产管理服务以提升数据资产的管理水平和数据资产的使用效率为目标,搭建数据管理框架,实现统一的数据资产视图、数据资产台账化、指标来源可追溯、数据质量监控的全过程。 数据数据源是指数据的来源,是提供某种所需要数据的器件或原始媒体。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期 无需AI技能,支持模型自动生成,业务人员快速使用

    来自:帮助中心

    查看更多 →

  • 预训练

    5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。 系统还支持打包训练模型,用于

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了