AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型的参数个数 更多内容
  • 创建自动学习项目有个数限制吗?

    创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    通过提供对分布式计算支持,Ray促进了更快模型训练和更有效资源使用,对于那些希望在多台机器上扩展其应用研究人员和工程师来说,是一个强有力工具。同时,Ray生态系统还包括一些高级库,例如Ray Tune(用于超参数调整)、RLlib(用于强化学习)、Ray Serve(用于模型服务)等,以满足不同场景下的需求。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    CCE集群版本为停止维护版本,视为“不合规” cce-cluster-oldest-supported-version CCE集群运行非受支持最旧版本 cce 如果CCE集群运行是受支持最旧版本(等于参数“最旧版本支持”),视为“不合规” cce-endpoint-public-access

    来自:帮助中心

    查看更多 →

  • 概述

    多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • IoTA.01010026 资产模型个数超过配额限制

    IoTA.01010026 资产模型个数超过配额限制 错误码描述 资产模型个数超过配额限制。 可能原因 每租户每个项目下资产模型限制1000个。 处理建议 请先删除无用资产模型后,再添加新资产模型,注意删除资产模型前需先删除该模型下所有资产、最后才能删除该模型。 父主题: 资产建模相关错误码

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    适用于处理超大规模数据,含大量稀疏特征在线学习常见优化算法。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型1范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • ALM-257564679 学习到动态mac地址个数达到上限

    业务质量告警 告警参数 参数名称 参数含义 OID 该告警所对应MIB节点OID号。 VlanId VLAN ID。 MacLimitMaxMac 配置可以学习到MAC最大数。 对系统影响 当超过MAC地址表项限制时,设备不再学习MAC表项。 可能原因 学习动态MAC数

    来自:帮助中心

    查看更多 →

  • ALM-257564680 学习到动态mac地址个数达到上限

    业务质量告警 告警参数 参数名称 参数含义 OID 该告警所对应MIB节点OID号。 L2IfPortName 接口名字。 MacLimitMaxMac 配置可以学习到MAC最大数。 对系统影响 当超过MAC地址表项限制时,设备不再学习MAC表项。 可能原因 学习动态MAC

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    单击“提交”。创建数据集显示在“我创建”页签数据集列表中,创建数据集完成。 步骤二:创建模型微调流水线 模型微调任务是指调整大型语言模型参数以适应特定任务过程,通过在与任务相关数据集上训练模型来完成。所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    体支持参数请参考表1。 表1 常规配置参数 算法类型 参数参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    据安全前提下,利用多方数据实现联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者数据特征重叠较多,而样本ID重叠较少情况,联合多个参与者具有相同特征多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上的预测输出效果。

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    调整阈值 训练好模型可以通过调整阈值,影响机器人直接回答准确率。阈值越高,机器人越严谨,对用户问泛化能力越弱,识别准确率越高;阈值越低,机器人越开放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”页面,在模型列表的操作列单击“调整阈值”。

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用流水线工具,核心是将完整机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 配置SparkSQL的分块个数

    配置SparkSQL分块个数 配置场景 SparkSQL在进行shuffle操作时默认分块数为200。在数据量特别大场景下,使用默认分块数就会造成单个数据块过大。如果一个任务产生单个shuffle数据块大于2G,该数据块在被fetch时候还会报类似错误: Adjusted

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了