AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习跨模型融合 更多内容
  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 基本概念

    将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这些模型可以将不同类型的数据进行融合和联合分析,从而实现更全面的理解和更准确的预测。多模态模型的应用非常广泛

    来自:帮助中心

    查看更多 →

  • 应用模型简介

    准确性。 不支持源数据汇聚处理,汇聚效率低。 开发效率较低,关键环境编码需要编码学习。例如:不同数据源需要熟悉各类DB语法,学习如何对接不同中间件等等。 针对传统方式的各类问题,产生了新的应用模型管理模式,帮助企业便捷开发,解决上述痛点: 通过业务化的对象模型,统一业务语义,实现数据快速精准查找。

    来自:帮助中心

    查看更多 →

  • 计费说明

    或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关

    来自:帮助中心

    查看更多 →

  • 融合与发布

    基础层的表,一般通过数据模型-逻辑模型创建。 图1 建模方式融合1 图2 建模方式融合2 图3 建模方式融合3 自定义 sql 融合 选择来源表和目标表,目标表是基础层的表,要确保来源表的表结构表名称和目标表一一对应,填写融合的 sql 语句,保存完之后在列表页启动作业。 交换任

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据的用法用量,不用担心数据被复制。 优势: 数据不离开卖家,更放心。 卖家控制“隐私规则”,控制“用法和用量”。 支持三层异构,组织、地域、数据源。 低成本部署,支持边缘模式单节点部署。 图3 使能数据交易

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 最新动态

    续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 方案概述

    ,为医疗机构提供了一个稳定、可靠、安全的平台,可以保证医疗数据的完整性、可用性和保密性,也可以实现跨区域、机构、跨平台的数据共享和协同。 方案结合智慧医疗的创新能力为医疗机构提供了一系列的智能化解决方案:例如智慧分导诊,智慧检验系统,生成式病历,互联网检验系统,全周期健康管理平台,全结构化专病数据库,智慧助理等。

    来自:帮助中心

    查看更多 →

  • 方案概述

    决策,实时回收数据反馈总结规律经验,沉淀营销策略库,加速策略体系化迭代。 全触点数据资产沉淀:实现精细、融合的客户全触点数据资产管理。基于完善的 ID-Mapping 体系与端、跨业务线行为数据采集,打通客户全触点数据资产。 方案架构 业务架构 图1 业务架构 方案主要由华为云

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档的模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这些模型可以将不同类型的数据进行融合和联合分析,从而实现更全面的理解和更准确的预测。多模态模型的应用非常广泛

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    ssification、kmeans。 attribute_list 枚举训练模型的输入列名。 取值范围:字符型,需要符合数据属性名的命名规范。 attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 成长地图

    理。除此之外,还可以自定义元素构造型、视图类型进行模型操作。 4+1视图 概述 逻辑视图 开发视图 部署视图 运行视图 用例视图 架构信息 架构检查 02 入门 从0到1,快速学习软件建模知识。 快速入门 创建模型工程 创建模型图 创建元素 创建连线关系 04 使用UML视图 统一建模语言UML。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 方案概述

    供个性化、系统、领域的信息与服务整合。 数据资产管理:提供从工具到内容的全套配置,解决实现学校数据可发现、可共享难题,满足全校信息化发展的数据需求。 教工、学工应用:以“教职工”为中心,围绕高校“人事、师资、劳资”等核心管理业务,构建高校校级人事综合管理平台;以服务学生成长发

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了