AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习分解短句 更多内容
  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 配置信息抽取简介

    辑json配置信息,完成信息抽取配置。 所支持的信息抽取函数请见信息抽取函数。 代码编辑 非结构化抽取 基础数据格式为txt文本的自然语言短句 通过选择合适的算法,完成信息抽取配置。 可选择已有的预置模型模板,也可选择您自定义的模型。 非结构化抽取 在通过结构化抽取方式进行信息抽

    来自:帮助中心

    查看更多 →

  • 执行横向联邦学习作业

    执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 获取横向联邦学习作业详情

    获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 自动学习/Workflow计费项

    存储费用:自动学习作业的数据通过 对象存储服务 (OBS)上传或导出,存储计费按照OBS的计费规则。 综上,运行自动学习作业的费用 = 计算资源费用(2.43 元) + 存储费用 示例:使用专属资源池运行自动学习作业。计费项:标准存储费用 假设用户于2023年4月1日创建了自动学习的图像分

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 订单支付完成后,点击“返回我的云市场”,回到“我的微认证”个人中心,进行对应微认证学习。如图1。 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的微认证”,进行对应微认证学习。如图2。 图2 进入课程学习-我的微认证

    来自:帮助中心

    查看更多 →

  • 使用Moodle搭建在线学习系统

    使用Moodle搭建在线学习系统 应用场景 Moodle是一个面向全球用户的开源在线教育系统,它被用于在线学习等场景。Moodle应用镜像基于Ubuntu 22.04操作系统,采用Docker部署,已预装Moodle应用以及其需要的运行环境。本节介绍如何安装部署Moodle应用。

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 应用场景

    游戏娱乐 将游戏娱乐中的语音聊天转成文字消息,提升用户阅读效率,提升用户体验。 有声读物 将书籍、杂志、新闻的文本内容转换成逼真的人声发音,充分解放人们的眼睛,在搭乘地铁、开车、健身等场景下获取信息、享受乐趣。 电话回访 在客服系统场景中,通过将回访内容转换成人声,直接使用语音和客户交流,提升用户体验。

    来自:帮助中心

    查看更多 →

  • 什么是工业数据转换引擎云服务

    智能计算服务:支持工作负载和节点的弹性伸缩,可以根据业务需求和策略,经济地自动调整弹性计算资源的管理服务。 计算集群:全面适配华为云各类计算实例,支持多规格机器计算,实现网格分解、网格计算和网格融合等数据转换的一系列动作。 数据文件存储:对接云存储,提供磁盘加密、快照和备份能力。 整体架构如图1所示。 图1

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端?

    钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端? 钉钉机器人、钉钉企业内部机器人、飞书机器人和企业微信机器人在添加订阅时,输入的订阅终端地址获取方式如下。 钉钉机器人 在钉钉的群设置中选择“智能群助手”,添加机器人时选择“自定义”,创建完成后即可获得w

    来自:帮助中心

    查看更多 →

  • 添加CoT思维链提示

    更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器人服务 对话机器人服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库的智能问答机器人系统。 对话机器人服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    想选择。 机器学习机器学习中多层神经网络需要大量计算资源,其中训练过程需要处理海量的数据,推理过程则希望极低的时延。同时机器学习算法还在不断优化中, FPGA以其高并行计算、硬件可编程、低功耗、和低时延等优势,可针对不同算法动态编程设计最匹配的硬件电路,满足机器学习中海量计算和

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了