AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习矩阵分解 更多内容
  • 提交排序任务API

    域感知因子分解机是因子分解机的改进版本,因子分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特

    来自:帮助中心

    查看更多 →

  • 颜色矩阵

    颜色矩阵 图1 颜色矩阵 颜色值矩阵:下表中,各颜色值同上述示意图一一对应。 表1 颜色矩阵 颜色值 FF000000 FF595959 FFA5A5A5 FFFFFFFF FF8E2323 FFB20000 FFDB7070 FFFF4C4C FF8E5923 FFB25900

    来自:帮助中心

    查看更多 →

  • 矩阵量表

    矩阵量表 矩阵量表用于形象地评估对事物的喜好程度。 在表单开发页面,从“数据组件”中,拖拽“矩阵量表”组件至表单设计区域,如图1。 图1 矩阵量表 如图2所示,使用矩阵量表对车辆进行评分。 图2 矩阵量表配置示例 显示名称:该组件在页面呈现给用户的名称,可以设置为中文,也可以设置为英文。

    来自:帮助中心

    查看更多 →

  • 排序策略

    和日志文件保存在该路径下。该路径不能包含中文。 因子分解机-FM 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。 表2 因子分解机参数说明 参数名称 说明 计算节点信息 用户可使用的

    来自:帮助中心

    查看更多 →

  • SDK功能矩阵

    SDK功能矩阵 Java、Python、C、.NET、Node.js、Android SDK对OBS各接口的支持情况请参见表1。 iOS、PHP、Go、BrowserJS、Harmony SDK对OBS各接口的支持情况请参见表2。 表1 OBS SDK功能矩阵1 接口类型 接口名

    来自:帮助中心

    查看更多 →

  • 获取任务权限矩阵

    获取任务权限矩阵 功能介绍 获取任务权限矩阵 调用方法 请参见如何调用API。 URI GET /v1/job/permission 表1 Query参数 参数 是否必选 参数类型 描述 project_id 是 String CodeArts项目ID,32位数字、小写字母组合。

    来自:帮助中心

    查看更多 →

  • DLI SDK功能矩阵

    DLI SDK功能矩阵 SDK开发指南指导您如何安装和配置开发环境、如何通过调用DLI SDK提供的接口函数进行二次开发。 Java、Python SDK功能矩阵请参见表1 表1 SDK功能矩阵 语言 功能 内容 Java OBS授权 介绍将OBS桶的操作权限授权给DLI的Java

    来自:帮助中心

    查看更多 →

  • 查询主机集群权限矩阵

    查询主机集群权限矩阵 功能介绍 根据主机集群id查询主机集群权限矩阵。 调用方法 请参见如何调用API。 URI GET /v2/host-groups/{group_id}/permissions 表1 路径参数 参数 是否必选 参数类型 描述 group_id 是 String

    来自:帮助中心

    查看更多 →

  • 项目经理工作量分解

    项目经理工作量分解 SOW中伙伴投入人天需具体拆分至负责人,伙伴必须投入项目经理对项目进行有效管理,并对项目经理工作量进行分解。 父主题: SOW(项目工作说明书)注意事项

    来自:帮助中心

    查看更多 →

  • 修改主机集群权限矩阵

    修改主机集群权限矩阵 功能介绍 根据主机集群id修改主机集群权限矩阵。 调用方法 请参见如何调用API。 URI PUT /v2/host-groups/{group_id}/permissions 表1 路径参数 参数 是否必选 参数类型 描述 group_id 是 String

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    处理、机器翻译、 语音识别 、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 召回策略

    调度的时间间隔。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    json” 。 低秩适应(LoRA)是一种重参数化方法,旨在减少具有低秩表示的可训练参数的数量。权重矩阵分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作

    来自:帮助中心

    查看更多 →

  • 策略参数说明

    UserCF 基于交替最小二乘的矩阵分解推荐 AlsCF 基于历史行为记忆生成候选集 HistoryBehaviorMemory 人工录入生成候选集 ManualInput sorting 逻辑斯蒂回归 LR 因子分解机 FM 域感知因子分解机 FFM 深度网络因子分解机 DEEPFM 核函数特征交互神经网络

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 获取构建任务的角色权限矩阵信息

    获取构建任务的角色权限矩阵信息 功能介绍 获取构建任务的角色权限矩阵信息 调用方法 请参见如何调用API。 URI GET /v1/job/permission/role 表1 Query参数 参数 是否必选 参数类型 描述 job_id 是 String 构建的任务ID; 编辑

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了