AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习的未来深度特征融合 更多内容
  • 现在与未来的功能

    转接至智能机器人,智能机器人与客户进行对话;或者智能机器人主动呼出,自动接通用户进行公告或回访类智能 语音交互 。 智能质检 服务质量一直是联络中心服务主要关注点之一,对通话录音质检则是其中重头。云联络中心支持自动将座席通话录音转写为文本文件,然后根据事先设定好质检规则对通

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型交易市场,是AI消费者接触NAIE云服务线上门户,是AI消费者对已上架AI模型进行查看、试用、订购、下载和反馈意见场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练框架,如Tensorflow、Spark MLlib、M

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    CCE集群版本为停止维护版本,视为“不合规” cce-cluster-oldest-supported-version CCE集群运行非受支持最旧版本 cce 如果CCE集群运行是受支持最旧版本(等于参数“最旧版本支持”),视为“不合规” cce-endpoint-public-access

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 融合验证

    融合验证 如果在创建图谱时配置了知识融合,存在被融合实体,就需要进行融合验证,即验证当前知识融合配置产生结果是否符合预期。 背景介绍 知识融合是指融合来自多个数据来源关于同一个实体或概念描述信息,对来自不同数据源知识在统一规范下进行异构数据整合、消歧。 如图1所示

    来自:帮助中心

    查看更多 →

  • 特征工程

    单击“创建”,界面新增“Harddisk”特征工程。 等待特征工程“环境信息”中特征工程状态从“创建中”变更为“运行中”,即开发环境创建完成。 单击特征工程“操作”列图标,进入JupyterLab环境“Launcher”界面。 在左侧代码目录中,可以看到系统自动为用户创建特征工程同名算法工程目录

    来自:帮助中心

    查看更多 →

  • 特征工程

    得超过行为数据时间范围。 测试数据时间:测试数据起始时间和终止时间,该起始时间和终止时间不得超过行为数据时间范围。 “RATE” 训练数据占比:生成结果中,训练集占整个训练集和测试集比例,默认0.7。 测试数据占比:生成结果中,训练集占整个训练集和测试集比例,默认0.3。

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    项目ID,获取方法请参考获取项目ID。 instance_id 是 String 实例ID。 最小长度:1 最大长度:64 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 package_id 是 String 模型包ID。 最小长度:1 最大长度:50 entity_urn

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • 产品优势

    人满意精度。此外,模型具备自我学习和不断进化能力,随着新数据持续输入,其性能和适应性不断提升,确保在多变语言环境中始终保持领先地位。 应用场景灵活 盘古大模型具备强大学习能力,能够通过少量行业数据快速适应特定业务场景需求。模型在微调后能够迅速掌握并理解特定行业专业知

    来自:帮助中心

    查看更多 →

  • 成本规划与计划

    使用成本中心成本分析,可以根据客户历史支出预测未来时间范围成本。成本分析成本和使用量预测,会参考不同计费模式特征,结合机器学习和基于规则模型来分别预测所有消费模式成本和使用量。 图2 成本和用量预测 使用成本分析确定基于趋势预测之后,您还可以利用华为云价格计算器,

    来自:帮助中心

    查看更多 →

  • GS

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 在什么场景下使用CloudPond?

    在线游戏场景:在线游戏依赖于低时延给玩家带来更好游戏体验。CloudPond允许游戏厂商将服务器部署在离最终客户更近场所,为对时延要求苛刻游戏场景提供更好性能。 矿业场景:将CloudPond部署在大矿周围小型分矿场或洗煤厂,保障矿业应用低时延部署同时,可以实现中心对各分矿场统一管控和运维。

    来自:帮助中心

    查看更多 →

  • 方案概述

    ,为后续管制措施提供有力依据。 综合数据挖掘分析支持决策:通过综合数据挖掘分析,国蓝中天能够为管治提供决策支持。这种数据驱动决策方式更加科学、合理,有助于提高管制策略有效性和针对性。 闭环管理与自主学习机制:国蓝中天实现了污染摸排流程化反馈数据闭环管理与自主学习。这种机制

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    创建数据预处理作业 数据预处理是训练机器学习模型一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型特征数据过程。TI CS 特征预处理功能能够实现对数据探索、分析、规整以及转换,以达到数据在训练模型中可使用、可实用,在TICS平台内完成数据处理到建模闭环。 假设您有如下数

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    高级版、专业版、旗舰版机器人支持轻量级深度学习。 重量级深度学习:适用于对问答精准度要求很高场景,扩展问越多,效果提升越明显。 旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了