AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习来进行特征选择 更多内容
  • 特征选择

    单击界面右上角的图标,选择“数据处理 > 特征选择 > 选择列”,界面新增“选择列”内容。 对应参数说明,如表2所示。 表2 参数说明 参数 参数说明 列筛选方式 特征列的筛选方式,有如下两种: 列·选择 正则匹配 列名 列筛选方式为“列选择”时展示,如果有多列特征数据需要保留,可单击“”同时选中多列特征名称。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是通过模型并行和数据并行实现分布式训练,从而提高训练速度。Accelerate提供了一系列的优化技

    来自:帮助中心

    查看更多 →

  • 查询特征选择执行结果

    < > |,长度要求在1~128之间。 通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好的语言获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    到准确地特征组合学习进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)特征交互进行建模,以此计算两个域

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    已触发重试的作业不受影响,仅对关闭后的执行作业生效。 CPU配额:执行特征选择作业和训练作业时,会创建新容器执行,该参数的值为创建新容器的CPU核数。 内存配额:执行特征选择作业和训练作业时,会创建新容器执行,该参数的值为创建新容器的内存。 样本粗筛:当己方数据过大无法导出成

    来自:帮助中心

    查看更多 →

  • 排序策略

    用不同的核(kernel)特征交互进行建模,以此计算两个域中特征的相互关系,其中核的种类包括向量内积外积、矩阵乘法、神经网络等。利用核函数建模特征交互,实现了参数共享,减小了模型复杂度。单击查看核函数特征交互神经网络详细信息。 表5 核函数特征交互神经网络参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    能力。取值范围:[0,1)。 给输入数据加噪音的概率 定义了给输入数据加噪音的概率。加噪音是一种正则化技术,它通过在输入数据中添加随机噪音增强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络替代线性回归,用随机森林代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。

    来自:帮助中心

    查看更多 →

  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 执行作业

    用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 开发者认证订单支付完成后,点击“返回我的云市场”,回到“我的开发者认证”个人中心,进行对应开发者认证学习。如图1 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的开发者认证”,进行对应开发者认证学习。如图2 图2

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择特征列。 配置“离散数量”。 单击“确定”。 在“特征操作流总览”区域会新增一个“特征离散化”节点。 One-hot编码 One-hot编码定义是使用N位状态寄存器对N个状态进行编码。直观来说,在特征工程中One-hot是将特征列根据样本数据的种类

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 订单支付完成后,点击“返回我的云市场”,回到“我的微认证”个人中心,进行对应微认证学习。如图1。 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的微认证”,进行对应微认证学习。如图2。 图2 进入课程学习-我的微认证

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    高级版、专业版、旗舰版机器人支持问答模型训练。 您可通过添加更多扩展问或改用其他类型的模型提高指标。包含以下三种训练模型: 默认模型:修改知识库内容后自动生效。 轻量级深度学习模型:修改知识库内容后需训练模型发布生效。 重量级深度学习模型:修改少量知识库内容无需重新训练发布,但会导致问答变慢,模型运行

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下

    来自:帮助中心

    查看更多 →

  • 产品术语

    数据集的实例,有具体的数据。 T 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLa

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了