神州信息低碳智慧园区可视化运营管理平台

神州信息低碳智慧园区可视化运营管理平台

提供全方面的能源综合管理服务,提高能源利用效率,实现上下游企业能源协同,减少能耗及碳排放量,降低园区综合管理成本

成就客户、实现低碳数字化转型

伙伴方案 公有云

    tensorflow可视化技巧 更多内容
  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 通过控制台可视化生成API参数

    通过控制台可视化生成API参数 在使用API创建集群或节点时,如果请求中的API参数组合不正确,将会导致接口调用失败。您可以通过控制台可视化生成API参数,根据选项配置自动生成正确的参数组合。 生成创建集群的API参数 登录CCE控制台。 在“集群管理”页面右上角单击“购买集群”。

    来自:帮助中心

    查看更多 →

  • 通过控制台可视化生成API参数

    通过控制台可视化生成API参数 在使用API创建集群或节点时,如果请求中的API参数组合不正确,将会导致接口调用失败。您可以通过控制台可视化生成API参数,根据选项配置自动生成正确的参数组合。 生成创建集群的API参数 登录CCE控制台。 在“集群管理”页面右上角单击“购买集群”。

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 模板管理

    。如果推理服务不使用Tensorflow引擎,实现起来效果不理想。 仅支持提供一个推理服务调用接口,无法满足某些Case的需求,比如:KPI异常检测。 模板优势 使用云端推理框架的“模板管理”具备如下优势: 相对于仅能使用固定类型的模型类型TensorFlow,模板部署模型包的方

    来自:帮助中心

    查看更多 →

  • MoXing

    MoXing 使用MoXing复制数据报错 如何关闭Mox的warmup Pytorch Mox日志反复输出 moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 训练作业使用MoXing拷贝数据较慢,重复打印日志

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    objects 引擎运行环境。 表5 EngineAndRuntimesResponse 参数 参数类型 描述 ai_engine String AI引擎类型,目前共有以下几种类型: TensorFlow PyTorch MindSpore XGBoost Scikit_Learn Spark_MLlib

    来自:帮助中心

    查看更多 →

  • 模型调试

    为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: 导入模型

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    engines结构数组 引擎规格参数列表,如表4所示。 表4 engines属性列表说明 参数 参数类型 说明 engine_type integer 训练作业的引擎类型。 1:TensorFlow。 2:MXNet。 4:Caffe。 5:Spark_MLlib 6: Scikit Learn

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 导入/转换本地开发模型

    操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 已在本地开发模型。本地自定义的训练模型,非“.om”格式的模型上传文件包含caffe模型文件“.caffemodel”和“.prototxt”和配置文件“

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

  • 基础支撑系统

    基础支撑系统 工业AI开发平台设计 本次工业AI开发平台采用华为ModelArts AI技术平台。华为ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用MindInsight可视化作业

    训练看板是MindInsight的可视化组件的重要组成部分,而训练看板的标签包含:标量可视化、参数分布图可视化、计算图可视化、数据图可视化、图像可视化和张量可视化等。 更多功能介绍请参见MindSpore官网资料:查看训练看板中可视的数据。 关闭MindInsight 关闭MindInsight方式如

    来自:帮助中心

    查看更多 →

  • 可视化会议数据(仪表盘)

    可视化会议数据(仪表盘) 管理员可使用仪表盘功能,通过图表的形式更直观地展示企业的数据情况。 选择左侧菜单栏中“管理员 > 仪表盘”,跳转到华为云会仪表盘页面。

    来自:帮助中心

    查看更多 →

  • 集群视角的成本可视化最佳实践

    集群视角的成本可视化最佳实践 应用现状 当前使用CCE时,默认是以CCE整个云服务的粒度体现计费信息,没有划分不同集群使用的成本。 解决方案 通过给集群使用的资源打上CCE-Cluster-ID标签,在成本中心通过标签过滤汇聚整个集群所使用资源的成本,以集群为单位进行成本分析,降本增效。

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    has no attribute 'dtype'” 问题现象 代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute

    来自:帮助中心

    查看更多 →

  • 提示词写作实践

    提示词写作实践 提示工程介绍 常用方法论 进阶技巧 写作示例

    来自:帮助中心

    查看更多 →

  • 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?

    多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了