tensorflow 运行.py 更多内容
  • 模型推理代码编写说明

    重写模型父类的初始化方法init可能导致模型“运行异常”。 可以使用的属性为模型所在的本地路径,属性名为“self.model_path”。另外pyspark模型在“customize_service.py”中可以使用“self.spark”获取SparkSession对象。 推理代码中,需

    来自:帮助中心

    查看更多 →

  • 更新TFJob

    "template": { "spec": { "containers": [ {

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 创建算法

    “启动命令” 必填,镜像的启动命令。 运行训练作业时,当“代码目录”下载完成后,“启动命令”会被自动执行。 如果训练启动脚本用的是py文件,例如“train.py”,则启动命令如下所示。 python ${MA_JOB_DIR}/demo-code/train.py 如果训练启动脚本用的是sh文件,例如“main

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 如果模型不符合“.om”模型支持的TensorFlowCaffe算子边界,请选择符合要求的模型。 父主题: 技能开发

    来自:帮助中心

    查看更多 →

  • 使用自定义镜像增强作业运行环境

    xxx/testdli0617/spark:2.4.5.tensorflow DLI 服务中提交Spark或者Flink jar作业时选择 自定义镜像 。 打开管理控制台的Spark作业或者Flink作业编辑页面,在自定义镜像列表中选择已上传并共享的镜像,运行作业,即可使用自定义镜像运行作业。 如果选

    来自:帮助中心

    查看更多 →

  • 运行

    烧录成功后,点击串口终端图标打开串口终端界面,设置端口(请根据实际使用的串口端口号进行设置),开启串口开关,开发板按下复位RESET按钮,可以看到串口输出,接收区输出的内容就是Huawei LiteOS启动后运行“Kernel Task Demo”的输出,如下图所示:Huawei LiteOS默认打开了Shell组件,可以在串口终端的“发

    来自:帮助中心

    查看更多 →

  • 运行

    Huawei LiteOS Studio通过“烧录”功能启动QEMU虚拟机运行Huawei LiteOS。如何配置“烧录器”并运行Huawei LiteOS,可以参考启动realview-pbx-a9仿真工程。烧录成功后,自动启动Huawei LiteOS,可以在“终端”界面中看

    来自:帮助中心

    查看更多 →

  • 运行

    按下开发板的复位RESET按钮,可以看到串口输出了Huawei LiteOS启动后运行“Kernel Task Demo”的打印信息,其中“Huawei LiteOS #”是Shell交互界面的提示符,如下图所示:Huawei LiteOS默认打开了Shell组件,可以在串口工具中输入支持的Shell命令,再勾选“加回车换行”,点击“发送

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    Notebook”页面,创建TensorFlow或者PyTorch镜像的开发环境实例。创建成功后,单击开发环境实例操作栏右侧的“打开”,在线打开运行中的开发环境。 TensorBoard可视化训练作业,当前仅支持基于TensorFlowPyTorch镜像,CPU/GPU规格的资

    来自:帮助中心

    查看更多 →

  • 准备工作

    定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装的是tensorflow-cpu,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gpustat -cp -i 使用Ctrl+C可以退出。 使用python命令 执行nvidia-ml-py3命令(常用)。 !pip install nvidia-ml-py3 import nvidia_smi nvidia_smi.nvmlInit() deviceCount

    来自:帮助中心

    查看更多 →

  • 运行流程引擎的流程运行服务

    运行流程引擎的流程运行服务 使用已有流程元模板启动流程 审批已启动的流程任务 父主题: 流程引擎使用指南

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入和预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 运行

    可以参考如下命令,通过QEMU启动guest虚拟机运行Huawei LiteOS,因为realview-pbx-a9工程默认使能了SMP(多核),所以启动虚拟机时也需要设置-smp参数:$ qemu-system-arm -machine realview-pbx-a9 -smp 4 -m 512M -kernel out/realvie

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎的训练作业。同一个用户的多个项目,创建Tensorboard任

    来自:帮助中心

    查看更多 →

  • 查询AI应用详情

    查询AI应用详情 功能介绍 查询AI应用详情,根据AI应用ID查询AI应用的详细信息。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{projec

    来自:帮助中心

    查看更多 →

  • 使用模型

    当前只对python3做了优化,python2下无法直接运行Jupyter Notebook。 CodeArts IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了