tensorflow reuse 更多内容
  • 安全和认证(gaussdb.conf)

    修改密码时会检查配置参数password_reuse_time和password_reuse_max。 当password_reuse_time和password_reuse_max都为正数时,只要满足其中任一个,即可认为密码可以重用。 当password_reuse_time为0时,表示不限制密码重用天数,仅限制密码重用次数。

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    engines结构数组 引擎规格参数列表,如表4所示。 表4 engines属性列表说明 参数 参数类型 说明 engine_type integer 训练作业的引擎类型。 1:TensorFlow。 2:MXNet。 4:Caffe。 5:Spark_MLlib 6: Scikit Learn

    来自:帮助中心

    查看更多 →

  • MoXing

    MoXing 使用MoXing复制数据报错 如何关闭Mox的warmup Pytorch Mox日志反复输出 moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 训练作业使用MoXing拷贝数据较慢,重复打印日志

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    objects 引擎运行环境。 表5 EngineAndRuntimesResponse 参数 参数类型 描述 ai_engine String AI引擎类型,目前共有以下几种类型: TensorFlow PyTorch MindSpore XGBoost Scikit_Learn Spark_MLlib

    来自:帮助中心

    查看更多 →

  • 模型调试

    为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示

    来自:帮助中心

    查看更多 →

  • 导入/转换本地开发模型

    操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 已在本地开发模型。本地自定义的训练模型,非“.om”格式的模型上传文件包含caffe模型文件“.caffemodel”和“.prototxt”和配置文件“

    来自:帮助中心

    查看更多 →

  • 内核参数配置

    以下示例中,使用Pod SecurityContext来对两个sysctl参数net.core.somaxconn和net.ipv4.tcp_tw_reuse进行设置。 apiVersion:v1 kind:Pod metadata: name: xxxxx namespace:

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    has no attribute 'dtype'” 问题现象 代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

  • 模板管理

    。如果推理服务不使用Tensorflow引擎,实现起来效果不理想。 仅支持提供一个推理服务调用接口,无法满足某些Case的需求,比如:KPI异常检测。 模板优势 使用云端推理框架的“模板管理”具备如下优势: 相对于仅能使用固定类型的模型类型TensorFlow,模板部署模型包的方

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?

    多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: 导入模型

    来自:帮助中心

    查看更多 →

  • SSH连接或者服务偶发性断开问题处理

    根因分析 执行以下命令,查看系统内核是否开启了TIME_WAIT快速回收和重利用策略 sysctl -a |grep tcp_tw 如图1所示,确认已开启该策略。 图1 TIME_WAIT 由于服务端开启了TIME_WAIT快速回收和重利用策略导致,即启用了net.ipv4.tcp_tw_recycle或者net

    来自:帮助中心

    查看更多 →

  • Notebook中快速使用MoXing

    Notebook”开发页面。 在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox

    来自:帮助中心

    查看更多 →

  • 模型包规范介绍

    vice.py依赖的文件可以直接放model目录下 Custom模型包结构,与您 自定义镜像 AI引擎有关。例如自定义镜像中的AI引擎TensorFlow,则模型包采用TensorFlow模型包结构。 父主题: 模型包规范

    来自:帮助中心

    查看更多 →

  • 公共依赖Demo

    公共依赖Demo 使用TensorFlow进行线性回归 使用pytorch进行线性回归 sklearn gym 父主题: 依赖包管理

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 产品变更公告

    ServiceAccount Token安全性提升说明 Helm V2 升级Helm V3 公告 CCE集群IPVS转发模式下conn_reuse_mode问题说明 CCE Turbo 集群正式发布,敬请购买使用 Everest插件优化密钥认证功能公告

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了