AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练数据集很大 更多内容
  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。

    来自:帮助中心

    查看更多 →

  • 训练任务

    分布式训练任务 八爪鱼自动驾驶平台的多机分布式训练功能可以帮助用户加快模型训练速度,提高训练效率,并支持更大规模的深度学习任务。通过多机分布式训练,用户可以将训练任务分配到多台计算机或 服务器 上并行进行,充分利用硬件资源,加快模型收敛速度,提高训练效果。平台支持多种深度学习框架,如

    来自:帮助中心

    查看更多 →

  • 数据集

    KPI_60mins:KPI 60分钟数据集 TPC-iSPS11_60:KPI异常检测数据集 amazon:迁移学习Office-31 A(Amazon)数据集 dslr:迁移学习Office-31 D(DSLR)数据集 webcam:迁移学习Office-31 W(Webcam)数据集 caltech:迁移学习Caltech-256数据集

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    例如: 增量训练 分布式训练 训练加速 训练高可靠性 查看训练结果和日志 查看训练作业详情 训练作业运行中或运行结束后,可以在训练作业详情页面查看训练作业的参数设置,训练作业事件等。 查看训练作业日志 训练日志用于记录训练作业运行过程和异常信息,可以通过查看训练作业日志定位作业运行中出现的问题。

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

  • 创建横向评估型作业

    可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。 图2 新建作业 在弹出的界面,继续配置可信联邦学习作业的参数,参数配置参考表1。 图3 配置参数 “数据集配置”的“可选数据列表”: 本地运行环

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    源中步骤4。 训练模型 用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 评估时必填,训练时可选,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据迭代计算的次数。 训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合。

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • ModelArts

    发布免费模型 数据集的分享和下载 AI Gallery的资产集市提供了数据集的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据集,存储至当前帐号的OBS桶或ModelArts的数据集列表。分享者可将已处理过的数据集发布至AI Gallery。 下载数据集 AI Gallery发布数据集

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 数据准备

    横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced-Learn中的SMOTE算法,进行了数据集的扩充。下表为扩充过后的数据集统计信息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院的训练样本数目 7366 其他机构的训练样本数目 7366

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-L

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 模型训练

    。 单击“开始训练”,训练任务开始。 单击“关闭”,返回联邦学习工程详情界面,“模型训练任务”下方展示新建的训练任务,“训练状态”列展示任务的状态。 ALL显示所有训练任务。 WAITING表示训练任务准备中。 RUNNING表示正在训练。 FINISHED表示训练成功。 FAILED表示训练失败。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 自动学习的每个项目对数据有哪些要求? 创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集训练得到的,而在特定

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    建议先在开发环境中调试完成训练代码后再创建生产训练作业。 创建Notebook实例 训练模型 准备算法 创建训练作业前需要先准备算法,可以订阅AI Gallery中的算法,也可以使用用户自己的算法。 准备算法 创建训练作业 创建一个训练作业,选择可用的数据集版本,并使用前面编写完成的训练脚本。训练完成后,将生成模型并存储至OBS中。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了