GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu硬件加速 更多内容
  • gpu-device-plugin

    安装nvidia-fabricmanager服务 A100/A800 GPU支持 NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 本文以驱动版本470.103

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 3D回放

    3D回放 前提要求 3D回放对回放机器配置有以下要求: 回放机器需要GPU硬件。硬件加速的方式:在chrome设置-高级中打开硬件加速 。 机器的参考配置(低配):8核cpu 、UHD620的gpu 、16G内存 、100Mbps带宽。 查看3D回放 3D回放页面详细说明如下: 图1

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为 服务器 GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 使用Kubernetes默认GPU调度

    通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器实例中创建GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。 优势

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器 驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • 手动安装GPU加速型ECS的GRID驱动

    微软的远程登录协议不支持使用GPU的3D硬件加速能力,如需使用请安装VNC/PCoIP/NICE DCV等第三方桌面协议软件,并通过相应客户端连接GPU实例,使用GPU图形图像加速能力。 使用第三方桌面协议连接后,在Windows控制面板中打开NVIDIA控制面板 。 在一级许可证服务器中填入部署的License

    来自:帮助中心

    查看更多 →

  • 预处理模块简介

    预处理模块简介 hilens::Preprocessor类 硬件加速的预处理器 #include <media_process.h> 析构函数 ~Preprocessor() virtual hilens::Preprocessor::~Preprocessor() 父主题: 预处理

    来自:帮助中心

    查看更多 →

  • 构造图像预处理器

    构造图像预处理器 该接口用于构造一个预处理器,用于进行Resize/Crop操作(3559硬件加速)。 接口调用 hilens.Preprocessor() 返回值 返回预处理器实例。 如果失败则抛出一个CreateError。开发者可以在查看技能日志输出。 父主题: 预处理模块

    来自:帮助中心

    查看更多 →

  • Serverless GPU使用介绍

    Serverless GPU使用介绍 概述 应用场景 父主题: GPU函数管理

    来自:帮助中心

    查看更多 →

  • 创建GPU虚拟化应用

    创建GPU虚拟化应用 本文介绍如何使用GPU虚拟化能力实现算力和显存隔离,高效利用GPU设备资源。 前提条件 已完成GPU虚拟化资源准备。 如果您需要通过命令行创建,需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 约束与限制 init容器不支持进行GPU虚拟化。

    来自:帮助中心

    查看更多 →

  • 监控GPU虚拟化资源

    监控GPU虚拟化资源 本章介绍如何在U CS 控制台界面查看GPU虚拟化资源的全局监控指标。 前提条件 完成GPU虚拟化资源准备。 当前本地集群内存在节点开启GPU虚拟化能力。 当前本地集群开启了监控能力。 GPU虚拟化监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    1及以上版本 gpu-device-plugin插件:2.0.0及以上版本 步骤一:纳管并标记GPU节点 如果您的集群中已有符合基础规划的GPU节点,您可以跳过此步骤。 在集群中纳管支持GPU虚拟化的节点,具体操作步骤请参见纳管节点。 纳管成功后,给对应支持GPU虚拟化节点打上“accelerator:

    来自:帮助中心

    查看更多 →

  • GPU实例故障分类列表

    GPU实例故障分类列表 GPU实例故障的分类列表如表1所示。 表1 GPU实例故障分类列表 是否可恢复故障 故障类型 相关文档 可恢复故障,可按照相关文档自行恢复 镜像配置问题 如何处理Nouveau驱动未禁用导致的问题 ECC错误 如何处理ECC ERROR:存在待隔离页问题 内核升级问题

    来自:帮助中心

    查看更多 →

  • 手动更新GPU节点驱动版本

    置为GPU插件配置中指定的版本。 如果需要稳定升级GPU节点驱动,推荐使用通过节点池升级节点的GPU驱动版本。 前提条件 需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 操作步骤 如果您需要使用指定的NVIDIA驱动版本,可以在节点安装新版本GPU驱动,操作步骤如下:

    来自:帮助中心

    查看更多 →

  • 兼容Kubernetes默认GPU调度模式

    兼容Kubernetes默认GPU调度模式 开启GPU虚拟化后,默认该GPU节点不再支持使用Kubernetes默认GPU调度模式的工作负载,即不再支持使用nvidia.com/gpu资源的工作负载。如果您在集群中已使用nvidia.com/gpu资源的工作负载,可在gpu-device-p

    来自:帮助中心

    查看更多 →

  • 如何处理GPU掉卡问题

    a1),请继续按照处理方法处理;如果查找不到显卡或者显示状态为rev ff,请根据显卡故障诊断及处理方法进行故障诊断。规格对应显卡数量可以通过GPU加速型查询。 lspci | grep -i nvidia 处理方法 非CCE集群场景,建议尝试自行重装驱动,或升级驱动版本后执行nvidi

    来自:帮助中心

    查看更多 →

  • T4 GPU设备显示异常

    T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU云服务器,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了