GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    按年租GPU计算服务器 更多内容
  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 应用场景

    云容器实例提供如下特性,能够很好的支持这类场景。 计算加速:提供GPU/Ascend等异构芯片加速能力 大规模网络容器实例调度:支持大规模、高并发的容器创建和管理 随启随用、按需付费:容器按需启动,资源规格和使用时长付费 图1 大数据AI计算场景 生物基因、药物研发等科学计算 生物基因、药品研发等领域需要高性能、

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    参见为函数配置预留实例。 服务质量优先,服务成本次优 预留GPU实例的计费周期不同于按量GPU实例,预留GPU实例是以实例存活生命周期进行计费,而不考虑实例的活跃与闲置(不请求计费)。因此,相较于按量GPU实例,总体使用成本较高,但相较于长期自建GPU集群,降本幅度达50%以上。

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 计算

    计算 弹性 服务器 ECS 裸金属服务器 BMS 镜像服务 IMS 弹性伸缩 AS 父主题: SCP授权参考

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • 竞价计费(竞价模式)

    资源保留,不计费,不进行处理。 GPU 不计费 不含本地盘的“GPU加速型”实例,关机后GPU资源不再保留。 云硬盘(系统盘和数据盘) 计费 不受关机影响,仍然资源计费原则正常计费。 带宽 计费 不受关机影响,固定带宽仍然资源计费原则正常计费。 弹性公网IP的带宽费用:按需计费(带宽计费)弹性公网IP的带宽费用。

    来自:帮助中心

    查看更多 →

  • 数据结构(查询规格详情)

    pci_passthrough:gpu_specs String G1型和G2型云服务器应用的技术,包括GPU虚拟化和GPU直通。 如果该规格的云服务器使用GPU虚拟化技术,且GPU卡的型号为M60-1Q,参数值为“m60_1q:virt:1”。 如果该规格的云服务器使用GPU直通技术,且GPU卡的型号

    来自:帮助中心

    查看更多 →

  • 如何进行VR头显空间设置?

    对于使用第三方VR运行环境(如SteamVR)的用户,GPU云服务器创建完成或重启后,建议用户在连接头显设备前先进行房间设置,即登录GPU云服务器配置环境,包括设置默认身高等操作。 前提条件 已在VR云渲游平台成功创建应用。 创建的GPU加速云服务器为“闲置”状态。 操作步骤 获取GPU云服务器的弹性公网IP。

    来自:帮助中心

    查看更多 →

  • 计费模式概述

    。系统将当前市场价格进行计费。 当“报价 < 市场价格”时,无法购买竞价计费型实例。 购买竞享实例需选择“保障周期”和“保障周期数量”。保障周期是购买竞享实例的最小单位时间,保障周期不同价格不同。 计费周期 订单的购买周期计费。 秒级计费,小时结算。 秒级计费,小时结算。

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • 准备GPU资源

    准备GPU资源 本文介绍如何在使用GPU能力前所需要的基础软件、硬件规划与准备工作。 基础规划 配置 支持版本 集群版本 v1.25.15-r7及以上 操作系统 华为云欧拉操作系统 2.0 系统架构 X86 GPU类型 T4、V100 驱动版本 GPU虚拟化功能仅支持470.57

    来自:帮助中心

    查看更多 →

  • 创建GPU应用

    com/gpu 指定申请GPU的数量,支持申请设置为小于1的数量,比如 nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 指定nvidia.com/gpu后,在调度时不会将负载调

    来自:帮助中心

    查看更多 →

  • 监控GPU资源

    监控GPU资源 本章介绍如何在UCS控制台界面查看GPU资源的全局监控指标。 前提条件 完成GPU资源准备。 当前本地集群已创建GPU资源。 当前本地集群开启了监控能力。 GPU监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择对应的集群并开启监控,详细操作请参照集群开启监控。

    来自:帮助中心

    查看更多 →

  • 步骤三:集群与应用创建

    选择“独享带宽”时,该参数可见。支持设置独享带宽的大小。 带宽计费:按照购买的带宽大小计费。 流量计费:按照实际使用的流量来计费。 流量计费与带宽大小无关,为了更好的VR体验,建议您将带宽大小调整为300Mbps。 流量计费 > 300Mbits 支持多路会话 选择VR型应用创建云服务器,该参数可见。 勾选“

    来自:帮助中心

    查看更多 →

  • 安装Windows特殊驱动

    对于一些类型的弹性云服务器,如果使用私有镜像进行创建,需要在制作私有镜像时安装特殊驱动。 GPU驱动 如果这个私有镜像用于创建GPU加速云服务器,需要在镜像中安装合适的GPU驱动来获得相应的GPU加速能力。GPU加速型实例中配备的NVIDIA Tesla GPU支持两种类型的驱动

    来自:帮助中心

    查看更多 →

  • 计算服务

    计算服务 本章节主要介绍弹性云服务器、裸金属服务器和镜像服务,让您更好的了解这些计算服务。 弹性云服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、内存、镜像、云硬盘组成的一种可随时获取、弹性可扩展的计算服务器,同时它结合VPC、虚拟防火墙、数据

    来自:帮助中心

    查看更多 →

  • VR云渲游平台与其他服务的关系

    云渲游平台使用统一身份认证服务实现认证和鉴权功能。 GPU加速云服务器 GACS GPU加速云服务器GPU Accelerated Cloud Server, GACS)能够提供强大的浮点计算能力,从容应对高实时、高并发的海量计算场景。您可以在创建时选择相应规格的GPU加速云服务器。 在云

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    A40:云工作站D7型|8核|32GB内存|4G显存 1 弹性公网IP 带宽费用: 独享 | 全动态BGP | 带宽计费 | 10Mbit/s x2 1 PLM 弹性云服务器 ECS 通用计算增强型 c7.4xlarge.2 16核 | 32GB;高IO | 100GB Windows Server 2016

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了