华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    主流深度学习模型 更多内容
  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.909)

    主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)

    主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法

    来自:帮助中心

    查看更多 →

  • ModelArts

    使用常用框架的元模型创建AI应用 针对使用常用框架完成模型开发和训练的场景,可以将您的模型导入至ModelArts中,创建为AI应用,进行统一管理。 1、如果您是在ModelArts中训练得到的模型,可直接从训练中导入模型。 2、如果您在本地或其他平台训练得到模型,可先将模型上传至OBS,再从OBS中导入模型。

    来自:帮助中心

    查看更多 →

  • 方案概述

    驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储和网络带宽等基础设施,即“大算力、大存力、大运力”的AI基础大设施底座,让算力发展不要偏斜。 从过去的经典AI,到今天人人谈论的大模型,自动驾驶,我们看到AI模型的参数及

    来自:帮助中心

    查看更多 →

  • 方案概述

    驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储和网络带宽等基础设施,即“大算力、大存力、大运力”的AI基础大设施底座,让算力发展不要偏斜。 从过去的经典AI,到今天人人谈论的大模型,自动驾驶,我们看到AI模型的参数及

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。 自动学习流程介绍 使用ModelArts自动学习开发AI模型无需编写代码,您只需上传数据、创建项目、完成数据标注、发布训练、然后将训练的模型部署上线。具体流程请参见图1。新版自动学习中,该流程可

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 什么是ModelArts

    发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练、创建AI应用、AI应用部署都可以在ModelArts上完成。从

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。

    来自:帮助中心

    查看更多 →

  • LLM大语言模型训练推理

    LLM大语言模型训练推理 在ModelArts Studio基于Llama3-8B模型实现新闻自动分类 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.909) 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 方案概述

    驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储和网络带宽等基础设施,即“大算力、大存力、大运力”的AI基础大设施底座,让算力发展不要偏斜。 从过去的经典AI,到今天人人谈论的大模型,自动驾驶,我们看到AI模型的参数及

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909)

    主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909)

    主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)

    主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905)

    主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.904)

    主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.904) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)

    主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 方案概述

    AI空间布置 AI空间算法:AI识别空间大小、动线、风水等维度参数,做到空间合理分区、科学布置; 模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“AI应用管理 > AI应用”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了