AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    主流深度学习框架 更多内容
  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    【可选】自定义数据集dataset_info.json配置文件绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架 是,选用ZeRO (Zero Redundancy Optimizer)优化器 ZeRO-0,配置以下参数 deepspeed:

    来自:帮助中心

    查看更多 →

  • 产品术语

    模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 B 标签列 模型训练输出的预测值,对应数据集的一个特征

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    Cluster使用的都是专属资源池。 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    据有诸多好处,它可以保证不同 服务器 上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-Ze

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。

    来自:帮助中心

    查看更多 →

  • 设置主流和演示视频源

    localMainSrc1 int 32位整数 主流视频源1 localMainSrc2 int 32位整数 主流视频源2 localMainSrc3 int 32位整数 主流视频源3 localAuxSrc int 32位整数 本端演示视频源 返回值 表1 设置主流和演示视频源返回值 参数 类型

    来自:帮助中心

    查看更多 →

  • 切换主流或演示视频源

    切换主流或演示视频源 接口名称 WEB_SwitchVedioSource 功能描述 设置主流视频源、本地材料源时调用该接口。 应用场景 设置主流视频源、本地材料源。 URL https://ip/action.cgi?ActionID=WEB_SwitchVedioSource

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数

    来自:帮助中心

    查看更多 →

  • 主流实例计算性能评测数据

    云平台提供了多种实例类型供您选择,不同类型的实例可以提供不同的计算能力和存储能力。同一实例类型下可以根据CPU和内存的配置选择不同的实例规格。本章节以通用计算增强型C6s、通用计算增强型C6、内存优化型M6为例,采用SPECInt(Standard Performance Evaluation Corporation,Integer)基准

    来自:帮助中心

    查看更多 →

  • ModelArts

    功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-Ze

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-Ze

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 创建算法

    txt”文件安装依赖包。使用预置框架创建训练作业请参考开发用于预置框架训练的代码指导。 使用预置框架 + 自定义镜像 : 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的算法;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,此时您可以使用预置框架 + 自定义

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了