致远高校一体化协同运营平台解决方案

致远高校一体化协同运营平台解决方案

    在线深度学习训练平台 更多内容
  • NLP大模型训练流程与选择建议

    Token计算器”。 NLP大模型训练类型选择建议 平台针对NLP大模型提供了两种训练类型,包括预训练和微调,二者区别详见表3。 表3 预训练和微调训练类型区别 训练方式 训练目的 训练数据 模型效果 应用场景举例 预训练 关注通用性:预训练旨在让模型学习广泛的通用知识,建立词汇、句法

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    一站式IDE模型训练环境。 模型训练提供如下功能: 新建模型训练工程:支持用户在线编辑并调试代码,基于编译成功的代码对模型训练工程的数据集进行训练,输出训练报告。用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 科学计算大模型训练流程与选择建议

    用于区域海洋基础要素预测 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3支持1个训练单元训练及1个推理单元部署。 科学计算大模型训练类型选择建议 中期天气要素预测模型的训练类型选择建议: 中期天气要素预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的中期天气要素预测

    来自:帮助中心

    查看更多 →

  • ModelArts Standard自动学习所创建项目一直在扣费,如何停止计费?

    Standard自动学习所创建项目一直在扣费,如何停止计费? 对于使用公共资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    Notebook实例中的数据或代码文件存储在OBS中。 训练模型 训练作业使用的数据集存储在OBS中。 训练作业的运行脚本存储在OBS中。 训练作业输出的模型存储在指定的OBS中。 训练作业的过程日志存储在指定的OBS中。 AI应用管理 训练作业结束后,其生成的模型存储在OBS中,创建AI应用时,从OBS中导入已有的模型文件。

    来自:帮助中心

    查看更多 →

  • ModelArts与其他服务的关系

    Notebook实例中的数据或代码文件存储在OBS中。 训练模型 训练作业使用的数据集存储在OBS中。 训练作业的运行脚本存储在OBS中。 训练作业输出的模型存储在指定的OBS中。 训练作业的过程日志存储在指定的OBS中。 AI应用管理 训练作业结束后,其生成的模型存储在OBS中,创建AI应用时,从OBS中导入已有的模型文件。

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台预置模型进行微调后,部署为模型服务,模型服务可以在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 华为HiLens包括云侧管理平台、端侧设备管理以及 开发者工具 和插件。 云侧平台(基础版与专业版共有功能) AI应用开发 提供统一技能开发框架,封装基础组件,简化开发流程,提供统一的API接口,支持多种深度学习开发框架。 提供模型训练、开发、调试、部署、管理一站式服务,无缝对接用户设备。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 计费说明

    服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    在下拉列表中选择数据集版本。 训练数据比例 填写训练数据比例,如果填为0,则任务不执行训练阶段。 训练数据比例是指用于训练模型的数据在完整数据集中所占的比例。 在实际应用中,训练数据比例的选择取决于许多因素,例如可用数据量、模型复杂度和数据的特征等。通常情况下,会选择较大的训练数据比例,以便训练出更准确

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了