隐马尔可夫模型与深度学习 更多内容
  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 产品功能

    用和监管。空间是联邦计算的载体,合作方只有加入空间才能参与联邦计算。 安全的作业管理 作业时,数据使用的过程审计、可追溯。 TICS 数据集成支持多方安全计算、可信联邦学习和联邦预测作业等作业方式。 多方安全计算 多方安全计算是 可信智能计算 提供的关系型数据安全共享和分析功能,曾经被

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    Function)是用来度量模型的预测值f(x)真实值Y的差异程度的运算函数。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 推理相关概念 表3 训练相关概念说明 概念名 说明 温度系数 温度系数(temperature)控制生成语言模型中生成文本的

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    调用PIE-Engine AI平台模型进行水体解译结果图 支持用户通过程序调用内置的UI组件,为自己的程序添加自定义的界面控件,实现交互式的可视化遥感分析 图9 内置UI交互能力的风云4A沙尘分析应用 具备在线零代码遥感地理 数据可视化 分析能力,通过简单快速操作完成对农业生产、气象监测、

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    发、训练和微调模型。 ModelArts Standard模型训练支持大规模训练作业,提供高可用的训练环境 支持单机多卡、多机多卡的分布式训练,有效加速训练过程 支持训练作业的故障感知、故障诊断故障恢复,包含硬件故障作业卡死故障,并支持进程级恢复、容器级恢复作业级恢复,提供

    来自:帮助中心

    查看更多 →

  • 产品优势

    架,为TB~EB级数据提供了更实时高效的多样性算力,支撑更丰富的大数据处理需求。产品内核及架构深度优化,综合性能是传统MapReduce模型的百倍以上,SLA保障99.95%可用性。 图1 DLI Serverless架构 传统自建Hadoop集群相比,Serverless架构的DLI还具有以下优势:

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0的基础高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义发展,深度学习的训练法则,神经网络的类型以及深度学习的应用

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其FP32相似的数

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其FP32相似的数

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其FP32相似的数

    来自:帮助中心

    查看更多 →

  • 准备工作

    准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题

    来自:帮助中心

    查看更多 →

  • ModelArts自动学习与ModelArts PRO的区别

    ModelArts自动学习ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 产品概述

    监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的 区块链 对接存储,实现使用过程的审计、可追溯。 容器化部署

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,

    来自:帮助中心

    查看更多 →

  • 学习与赋能合作伙伴发展路径

    学习赋能合作伙伴发展路径 华为云学习赋能伙伴发展路径关注伙伴的培训赋能、课程开发等核心能力,并通过激励和权益来支持学习赋能伙伴的成长,帮助伙伴建立盈利、可持续发展的业务模式,赋能华为云生态。 角色选择 角色认证 父主题: 合作伙伴发展路径

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了