AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    学会深度学习深度思考 更多内容
  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检

    来自:帮助中心

    查看更多 →

  • CoT思维链

    可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供文本、图像、音频、视频等内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测。 稳定可靠 内容审核 服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 功能介绍

    ,系统经过处理,生成语音对应的文字,支持的语言包含中文普通话、方言以及英语。方言当前支持四川话、粤语和上海话。 产品优势 高识别率 基于深度学习技术,对特定领域场景的 语音识别 进行优化,识别率达到业界领先。 前沿技术 使用工业界成熟的算法,结合学术界最新研究成果,为企业提供独特竞争力优势。

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 附录

    便地管理主机安全风险,实时发现黑客入侵行为,以及满足等保合规要求。 Web应用防火墙 WAF:对网站业务流量进行多维度检测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,全面避免网站被黑客恶意攻击和入侵。

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 欢迎使用基因容器服务

    欢迎使用基因容器服务 感谢您更深入的了解、学习并使用基因容器服务(GeneContainer Service,G CS )。 基因容器服务GCS提供云端基因分析解决方案,支持DNA、RNA、液态活检等主流生物基因分析场景。基因容器基于轻量级容器技术,结合大数据、深度学习算法,优化官方标准算法,为您

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 方案概述

    将新兴技术融入人才培养与专业建设过程中; 产业项目实训案例不足; 教师缺乏真实产业项目的工程实践经验,不能独立带学生做真实企业项目; 学生学习兴趣不高,动手意愿不足; 学生的学习情况要有数据记录、可评价。 通过本方案实现的业务效果: 青软创新集团数字化人才培养方案以数字化平台为基础创新实训教学模式

    来自:帮助中心

    查看更多 →

  • 附录

    部署您的容器化应用,以及方便的管理和维护。 volcano插件:Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Flink Operator:通过Flink

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online快速开发、发布 WeLink 应用。 4-基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了