检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
950808 转 1
预约咨询
工单提交
我有建议
未实名认证
已实名认证
立即前往
立即购买
立即购买
立即前往
立即前往
开发深度学习模型 创建和训练模型 使用如下命令创建并训练模型: 1 2 3 4 5 6 7 8 9 10 11 # create model model = keras.Sequential([ keras.layers.Flatten(input_shape=(28
查看更多 →
IA GPU进行计算,尤其是在深度学习、大规模数据处理和高性能计算任务中,能够显著提升计算效率。 优化设计:容器镜像针对特定的任务(如深度学习框架、AI 任务等)进行优化,保证了性能和兼容性。 多种深度学习框架:NVIDIA提供了多个常用的深度学习框架的容器镜像,包括Tensor
深度研究 在进行复杂问题研究时,用户往往需要一个能够支持多步推理和层层拆解任务的智能系统。为此, KooSearch 引入了深度研究功能,旨在通过多轮对话交互和任务规划,帮助用户完成需要多步推理的复杂任务。用户可以在前端页面上配置模型,进行任务规划的多轮交互式修改,并选择“研究报告”
如何提高识别精度 尽量使用文字清晰度高、无反光的图片。进行图片采集时,尽量提高待识别文字区域占比,减少无关背景占比,保持图片内文字清晰人眼可辨认。 若图片有旋转角度,算法支持自动修正,建议图片不要过度倾斜。 图片尺寸方面,建议最长边不超过8192像素,最短边不小于15像素,图像长宽比例维持常见水平
登录E CS 控制台,进入 弹性云服务器 列表页面。 在待深度诊断的ECS的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。
如何提高识别速度 识别速度与图片大小有关,图片大小会影响网络传输、图片base64解码等处理过程的时间,因此建议在图片文字清晰的情况下,适当压缩图片的大小,以便降低图片识别时间。推荐上传JPG图片格式。 根据实践经验,一般建议证件类的小图(文字少)在1M以下,A4纸大小的密集文档大图在2M以下。
提高RabbitMQ性能 本章节基于吞吐量和可靠性两个指标,指导您通过设置队列长度、集群负载均衡、优先队列数量等参数,实现RabbitMQ的高性能。 使用较小的队列长度 队列中存在大量消息时,会给内存使用带来沉重的负担。为了释放内存,RabbitMQ会将消息刷新到磁盘。刷盘需要重
学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南
可见范围内的学员在学员端可看见此项目并可以进行学习,学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人
旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。
0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 、 机器翻译 编程实验
提高Kafka消息处理效率 消息发送和消费的可靠性必须由分布式消息服务Kafka版和生产者以及消费者协同工作才能保证。同时开发者需要尽量合理使用分布式消息服务Kafka版的Topic,以提高消息发送和消息消费的效率与准确性。 对使用分布式消息服务Kafka版的生产者和消费者有如下的使用建议:
课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(
学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3
培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用
我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤
; 学生学习兴趣不高,动手意愿不足; 学生的学习情况要有数据记录、可评价。 通过本方案实现的业务效果: 青软创新集团数字化人才培养方案以数字化平台为基础创新实训教学模式,从实训入手探索新工科建设,可助力高校实现: 助力教师实践教学 实训指导文件——掌握实训实施过程,提高实践教学能力
如何提高缓存命中率 背景信息 CDN缓存命中率低,会导致源站压力大,静态资源访问效率低。您可以针对导致CDN缓存命中率低的具体原因,选择对应的优化策略,来提高CDN的缓存命中率。CDN缓存命中率包括流量命中率和请求命中率。 流量命中率 = 命中缓存产生的流量 / 请求总流量 请求命中率
附录:如何提高消息处理效率 消息生产和消费的可靠性必须由ROMA Connect、生产者和消费者协同工作才能保证,对使用ROMA Connect的生产者和消费者有如下的使用建议。 重视消息生产与消费的确认过程 消息生产 生产消息后,生产者需要根据ROMA Connect的返回信息
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
确认学习结果 操作场景 HSS学习完白名单关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动确认这些可疑进程,并分类标记为可疑、恶意或可信进程。 学习结果确认方式,仅在创建白名单策略时可设置: “学习结果确认方式”选择的“自
联系我们
您找到想要的内容了吗?
意见反馈
0/200
提交 取消
深度学习 提高
深度学习 提高准确度
提高学习深度和广度
深度学习 提高路径
提高 理论学习深度
深度学习提高能力
深度学习提高训练速度
提高分类精度 深度学习
深度学习提高精度方法
提高学习的广度和深度