时间序列预测深度学习 更多内容
  • 使用ModelArts Standard自动学习实现口罩检测

    单击“上传”选择上传一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图6 查看预测结果(1)--没戴口罩 图7 查看预测结果(2)--戴口罩 后续操作:清除相应资源 在完成预测之后,建议关闭服务,以免产生不必要的计费。 停止运行服务 预测完成后,单击页面右上角的“停止”,即可停止该服务。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 部署图像分类服务

    单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。 ModelArts的AI Gall

    来自:帮助中心

    查看更多 →

  • 职务序列管理

    职务序列管理 路径:核心人事-控制台-职岗体系-职务序列 图1 职务序列 职务序列的新增 单击【新建】弹出新建弹窗,在页面输入信息后,单击【保存】,创建成功 图2 新增职务序列1 图3 新增职务序列2 职务序列的编辑 信息如有错误需要更正,单击【编辑】,针对需要修改的信息重新编辑

    来自:帮助中心

    查看更多 →

  • 创建和管理序列

    SEQUENCE 除了为序列指定cache,方法二所实现的功能基本与方法一类似。但是一旦定义cache,序列将会产生空洞(序列值为不连贯的数值,如:1.4.5),并且不能保序。另外为某序列指定从属列后,该列删除,对应的sequence也会被删除。虽然数据库并不限制序列只能为一列产生默认值,但最好不要多列共用同一个序列。

    来自:帮助中心

    查看更多 →

  • 创建和管理序列

    SEQUENCE 除了为序列指定cache,方法二所实现的功能基本与方法一类似。但是一旦定义cache,序列将会产生空洞(序列值为不连贯的数值,如:1.4.5),并且不能保序。另外为某序列指定从属列后,该列删除,对应的sequence也会被删除。虽然数据库并不限制序列只能为一列产生默认值,但建议不要多列共用同一个序列。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 时序预测学件

    时序预测学件 创建项目 时序预测 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 删除批量预测作业

    删除批量预测作业 删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测

    来自:帮助中心

    查看更多 →

  • 编辑批量预测作业

    编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 查询联邦预测作业列表

    作业类型。作业类型:SQL.联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。 hfl_type String fl作业类型枚举。1.TRAIN训练

    来自:帮助中心

    查看更多 →

  • 方案概述

    函数工作流 :用于实现调用销量预测服务的业务逻辑,完成模型的自动部署。 销量预测服务:提供分时销量预测服务,可灵活调整预测时间点,根据历史销量、商品属性、促销活动等基础信息训练得到准确的预测模型。 方案优势 行业化建模经验 内置社区团购类销量预测行业化建模经验,有效提高模型预测准确率。 降本增效

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理

    来自:帮助中心

    查看更多 →

  • 创建联邦预测作业

    创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了