生成模型+深度学习 更多内容
  • 代码生成

    代码生成 功能 通过 DevStar 模板生成代码。 语法 hcloud DevStar <operation> --cli-region="cn-north-1" --param1=value1 --param2=value2 ... 其中 “operation”可选内容如下:

    来自:帮助中心

    查看更多 →

  • 生成考试

    生成考试 添加试卷 关联课程 发布考试 创建副本 预览考试 撤回考试 父主题: 考试列表

    来自:帮助中心

    查看更多 →

  • 诗歌生成

    诗歌生成 功能介绍 根据用户的输入生成诗歌。 具体Endpoint请参见终端节点。 调用华为云NLP服务会产生费用,本API以定制版API 定价 按需计费,不支持使用套餐包,使用时请在 自然语言处理 价格计算器 按需计费-自然语言处理定制版API中查看费用详情。 本API调用限制为2次/秒。

    来自:帮助中心

    查看更多 →

  • 代码生成

    代码生成 CodeArts Repo模板生成代码 Devstar 模板生成代码 查询任务详情 下载模板产物 父主题: API

    来自:帮助中心

    查看更多 →

  • 分子生成

    单击“下一步”,进入参数设置页面。 选择基模型:支持选择基模型。此参数仅专业版支持。如果选择的基模型是非官方盘古药物大模型,则约束条件不支持官方机器学习属性,只支持以该基模型创建的属性模型作为约束条件。基模型列表见AI建模。 选择属性模型:选择AI模型。如果需要创建模型,可参考AI模型。此参数只有专业版

    来自:帮助中心

    查看更多 →

  • 生成答案

    presence_penalty 否 Float 用于调整模型对新Token的处理方式。即如果一个Token已经在之前的文本中出现过,那么模型生成这个Token时会受到一定的惩罚。当presence_penalty的值为正数时,模型会更倾向于生成新的、未出现过的Token,即模型会更倾向于谈论新的话题。 最小值:-2

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    旧可以保持较好的模型性能。 训练模型 选择训练所需要的模型。支持选择“预置模型”或者“我的模型”。 预置模型:系统提供的LLM(大语言)预置模型。 我的模型:经过用户预训练或者微调训练后的模型模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。 训练参

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎使用流程

    的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 自建模型并发布为模型服务 模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通过调测

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    实时查看训练日志,监控程序。 tail -f nohup.out 如果显示如下信息, 表示模型训练完成。 图4 模型训练完成 在训练过程中观察单GPU卡的利用率,如下: 图5 GPU利用率 查看生成模型checkpoint。 本示例生成模型checkpoint路径设置在“/workspace/Megat

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。 系统还支持打包训练模型,用于

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 风格化照片建模生成的模型文件是什么格式?

    风格化照片建模生成模型文件是什么格式? 风格化照片建模生成Glb格式的模型文件。 父主题: 照片建模

    来自:帮助中心

    查看更多 →

  • 产品功能

    因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据

    来自:帮助中心

    查看更多 →

  • 使用模型

    ,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了