AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    什么深度学习模型用来识别波形 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 模型识别跟踪

    hasTracked; //识别跟踪结果,true:成功;false:失败 public string trackMsg; //识别跟踪信息 public string modelName; //模型名称 public string url; //模型下载链接,暂不支持 public

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    基于领先的语音识别引擎、智能文本检测模型,精准识别出语音中涉黄、涉恐、辱骂等违规场景,极大提升产品用户体验。 内容审核-视频 基于先进的人工智能技术综合检测视频画面、声音、字幕等,精准高效识别各类涉黄、涉暴、广告等违规内容,提高平台内容治理质量和效率。 内容审核 -音频流 精准识别多场景下

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检测,准确识别图像中包含的影视明星、网红人物等。

    来自:帮助中心

    查看更多 →

  • 应用场景

    支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 录播/电台语音 监测内容传播类 / FM电台类音频数据,降低业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。 输出结果:数字人视频。

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略与全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 排序策略

    含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的语音识别模型识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功应用

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    模型开发基本概念 大模型相关概念 概念名 说明 大模型什么模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟的权限管理体系,保障数据安全的同时,确保团队高效协作。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了