AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习自制训练集 更多内容
  • 大模型开发基本流程介绍

    大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据准备:大模型的性能往往依赖于大量的训练数据。因此,数据准备是模型开发的第一步。首先,需要根据业务需求收集相关的原

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 数据配置 训练数据 选择数据集中已发布的数据,这里数据需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练 选择训练数据中的部分时间数据,训练数据尽可能多一些。

    来自:帮助中心

    查看更多 →

  • 排序策略

    名称是part-00000开头的文件,需要用户提供文件的OBS路径。 最大迭代轮数 模型训练的最大迭代轮数,默认50。 提前终止训练轮数 在测试上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。 初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    、课件制作等场景模拟真人配音,提升数字内容生产效率。 算法运行机制 训练阶段: 用户上传一段真人语音音频及授权书作为输入。 音频经过人工安全审核和授权认证后,由训练人员标注用于训练的音频数据,使用深度学习算法训练生成数字人声音模型。 推理阶段: 用户上传一段文本作为输入文本内容,由系统自动审核。

    来自:帮助中心

    查看更多 →

  • 执行作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。 常规配置:通过界面点选

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    tensorflow version print(tf.__version__) 下载Fashion MNIST图片数据,该数据包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset fashion_mnist

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据,也可以使用自己准备的数据。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据,也可以使用自己准备的数据。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    1:置信度偏低。 2:基于训练数据的聚类结果和预测结果不一致。 3:预测结果和训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据,也可以使用自己准备的数据。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    true fp16,配置以下参数 fp16: true 是否使用自定义数据 是,参考准备数据(可选)后,填写自定义注册后数据前缀名称及数据绝对路径,参考表1dataset_dir行,如demo.json数据前缀则为demo dataset: demo dataset_dir:

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    测试准确率 (%) 97.065 98.140 98.415 测试AUC 0.995 0.996 0.997 训练时长 (秒) 166 167 216 从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据的分类相对简单,且数据经过了扩充导致的;

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一:上传训练权重文件和数据 如果在准备代码和数据阶段已经上传权重文件、自定义数据,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    identity,alpaca_en_demo 【可选】注册在dataset_info.json文件数据名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据存放于dataset_info.json同目录下。 dataset_dir /home/ma

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据 如果在准备代码和数据阶段已经上传权重文件、自定义数据,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据 如果在准备代码和数据阶段已经上传权重文件、自定义数据,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了