AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中正负样本 更多内容
  • 批量更新团队标注样本的标签

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0的基础与高阶操作,TensorFlow2.0的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。 自动学习流程介绍 使用ModelArts自动学习开发AI模型无需编写代码,您只需上传数据、创建项目、完成数据标注、发布训练、然后将训练的模型部署上线。具体流程请参见图1。新版自动学习,该流程可完

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 500 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss

    来自:帮助中心

    查看更多 →

  • 数据准备

    息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院的训练样本数目 7366 其他机构的训练样本数目 7366 测试集样本数目 7257 操作步骤 进入 TICS 服务控制台。 在计算节点管理,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点

    来自:帮助中心

    查看更多 →

  • CoT思维链

    果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无

    来自:帮助中心

    查看更多 →

  • 查询团队标注的样本信息

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240061号 算法基本原理 数字人语音驱动算法是指使用深度学习将语音转换成3D数字人表情和肢体驱动数据的一种技术。 其基本情况包括: 输入数据:语音音频数据。 算法原理:通过深度学习算法,提取语音音频的特征,并转化为表情驱动的表情基系数。 输出结果:表情基系数。 应

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    为什么微调后的盘古大模型只能回答训练样本的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据,自动学习数据特征和规律,智能寻优特征&ML模型及参数,准确性甚至达到专家开发者的调优水平 图1 自动学习流程 父主题: Standard功能介绍

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TI CS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 max_steps 5000 非必填。表示训练step迭代次数。会自动计算得出。 save_steps 5000 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    数据集版本发布失败 出现此问题时,表示数据不满足数据管理模块的要求,导致数据集发布失败,无法执行自动学习的下一步流程。 请根据如下几个要求,检查您的数据,将不符合要求的数据排除后再重新启动自动学习的训练任务。 ModelArts.4710 OBS权限问题 ModelArts在跟OBS交互

    来自:帮助中心

    查看更多 →

  • 使用TICS可信联邦学习进行联邦建模

    使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了