AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习正负样本比例 更多内容
  • 执行作业

    整数。 分类阈值 区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置:

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    整数。 分类阈值 区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置:

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    的能力。 在形成可用的训练数据前,需要对这些影像数据进行正负样本的手工分类,符合标准的影像作为模型训练中的正样本数据。实际操作中,我们通过对单个影像实例进行查看和对比,在界面上设置“AI训练”或“学习案例”,以标识出正样本。 专家经验库按不同采集来源的图片与视频进行分类,分为任务

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 水平正负柱图

    水平正负柱图 本章节主要介绍水平正负柱图组件各配置项的含义。 图1 水平正负柱图 样式 尺寸位置 图表尺寸:设置图表的宽和高。单位为px。 图表位置:设置图表在画布中的位置。单位为px。 全局样式 字体:设置图表中文字的字体。 柱子样式 柱子宽度:设置柱子的宽度。 柱子圆角度:设置柱子的圆角度。

    来自:帮助中心

    查看更多 →

  • 批量添加样本

    objects 样本标签列表。 metadata 否 SampleMetadata object 样本metadata属性键值对。 name 否 String 样本文件名称,名称不能包含!<>=&"'特殊字符,长度为0-1024位。 sample_type 否 Integer 样本类型。可选值如下:

    来自:帮助中心

    查看更多 →

  • 功能介绍

    面向个人/组织的云端多人协同样本标注与管理,支持基于多光谱、SAR、高光谱、无人机等航天航空影像及时空地理矢量数据进行标注,覆盖目标识别、语义分割、变化检测三种场景,实现从样本标注、质检、审核、样本集制作、入库管理全流程。 图5 多人协同的样本标注1 图6 多人协同的样本标注2 支持上传矢

    来自:帮助中心

    查看更多 →

  • 创建样本分布统计作业

    的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum( case when i.label > 0 then 1 else 0 end ) as positive_count, sum(

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    本节实验不再将训练集均匀划分到两个参与方,而是以不同的比例进行划分,从而探究当参与方数据量不同时,模型性能的变化情况。具体划分如下所示。实验中训练轮数固定为10,迭代次数固定为50。 参与方持有的样本数目信息 Host所持样本占比(%) Host样本数 Guest样本数 0.2 2946 11786 0

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 根据样本的ID列表批量删除数据集中的样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中的样本 from modelarts.session import Session from modelarts.dataset import

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 功能介绍 批量删除样本。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 新建固定比例外呼

    新建固定比例外呼 固定比例外呼是按比例分配给空闲座席来提高呼叫效率的外呼方式。比例可根据业务目标、空闲座席数量适当调整。固定比例外呼可与潜在客户快速建立联系,在大批量待呼号码场景下,使用固定比例外呼和其他外呼方式相比,优势明显。 前提条件 用户账号的平台角色请设置成话务员。 联系

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。 热身比例 热身比例是指在模

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了