AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习正负样本比例 更多内容
  • 设置实例容灾切换的故障节点比例

    设置实例容灾切换的故障节点比例 功能介绍 设置实例容灾切换的故障节点比例。 接口约束 该接口支持GeminiDB Cassandra数据库实例。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。

    来自:帮助中心

    查看更多 →

  • 方案概述

    成快速户型图生成 户型图部件自动识别:利用深度学习技术,自动识别2D户型图的墙体、门窗、比例尺。 户型图精校:利用比例尺生成3D真实世界坐标点,呈现精准户型 图2 户型图 硬装、柜体智能布置 自动化精装设计:基于AI和大数据,通过深度学习16.3亿图纸方案,实现精装方案自动设计.

    来自:帮助中心

    查看更多 →

  • 团队标注的数据分配机制是什么?

    目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000张都是未标注,且5个都是labeler的话,那就是每个人分2000。

    来自:帮助中心

    查看更多 →

  • 数据优化

    碰撞后的数据分布不太均衡,负样本比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题: 使用 TICS 多方安全计算进行联合样本分布统计

    来自:帮助中心

    查看更多 →

  • 创建ModelArts数据增强任务

    attributes),如发型、雀斑等;并且生成的图像在一些评价标准上得分更好。而本算法又增加了数据增强算法,可以在较少样本的情况下也能生成较好的新样本,但是样本数尽量在70张以上,样本太少生成出来的新图像不会有太多的样式。 图4 StyleGan算子 表2 StyleGan算子高级参数 参数名

    来自:帮助中心

    查看更多 →

  • 创建数据集导出任务

    object 通过样本属性搜索。 parent_sample_id 否 String 父样本ID。 sample_dir 否 String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。 sample_name 否 String 根据样本名称搜索(含后缀名)。

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 提交样本量或者时域分析任务

    提交样本量或者时域分析任务 功能介绍 管理员在数据集详情页面提交样本量或者时域探索任务。 URI URI格式 PUT /softcomai/datalake/v1.0/datasets/metadata 参数说明 无。 请求 请求样例 PUT https://telcloud.huawei

    来自:帮助中心

    查看更多 →

  • 查询单个智能标注样本的信息

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    更新的样本列表。 表3 SampleLabels 参数 是否必选 参数类型 描述 labels 否 Array of SampleLabel objects 样本标签列表,为空表示删除样本的所有标签。 metadata 否 SampleMetadata object 样本metadata属性键值对。

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 查询团队标注的样本信息

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 查询数据集导出任务的状态

    object 通过样本属性搜索。 parent_sample_id String 父样本ID。 sample_dir String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。 sample_name String 根据样本名称搜索(含后缀名)。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • CoT思维链

    果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了