AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中正负样本 更多内容
  • 执行作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    选择完成后单击“下一步”。 图3 数据选择 图4 样本粗筛 (可选步骤) 样本对齐,支持使用新对齐的结果,如图5所示;也支持复用隐私求交作业通过这两个数据集计算得到的结果,如图6所示。 图5 使用新对齐结果 图6 复用隐私求交作业的结果 (可选步骤)进行特征选择,此步骤要求数据

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    在ISDP,检查单、任务单、子任务单以及问题单都独立具备影像采集的能力。 在形成可用的训练数据前,需要对这些影像数据进行正负样本的手工分类,符合标准的影像作为模型训练的正样本数据。实际操作,我们通过对单个影像实例进行查看和对比,在界面上设置“AI训练”或“学习案例”,以标识出正样本。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 批量添加样本

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

  • 水平正负柱图

    水平正负柱图 本章节主要介绍水平正负柱图组件各配置项的含义。 图1 水平正负柱图 样式 尺寸位置 图表尺寸:设置图表的宽和高。单位为px。 图表位置:设置图表在画布的位置。单位为px。 全局样式 字体:设置图表中文字的字体。 柱子样式 柱子宽度:设置柱子的宽度。 柱子圆角度:设置柱子的圆角度。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 系统登录 在浏览器输入https://engine.piesat.cn/ai/samplelabel/#/链接,进入系统登录界面,如下图所示。 图1 系统登录界面1 图2 系统登录界面2 系统默认登录方式为密码登录。输入手机号码/邮箱/帐号、登录密码、字符验证码,单击

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程引入的重复图片、相

    来自:帮助中心

    查看更多 →

  • 创建样本分布统计作业

    的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum( case when i.label > 0 then 1 else 0 end ) as positive_count, sum(

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 根据样本的ID列表批量删除数据集中的样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中的样本 from modelarts.session import Session from modelarts.dataset import

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 功能介绍 批量删除样本。 调试 您可以在 API Explorer 调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 排序策略

    400,400。 激活函数 神经网络的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程以该概率保留神经元的值。默认0.8。 保存根路径 单击选择训练结果在OBS的保存根路径,训练完成后,会将模型

    来自:帮助中心

    查看更多 →

  • 执行批量预测作业

    联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测Tab页,查找待执行的作业,单击“发起预测”,在系统弹窗填写“分类阈值”,勾选数据集发起联邦预测。 如果在创建联邦预测作业 步骤4勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在/etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 产品功能

    对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    查看/标识/取消/下载样本 前提条件 具有专家经验库浏览用户角色权限的ISDP用户,可以自由查看专家经验库的图片/视频等影像样本数据。 具有专家经验库管理员角色权限的ISDP用户,可以对专家经验库的图片/视频等影像样本数据进行设置标签的操作。 用户已授予专家经验库相关的角色。授权方法请参见“23

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了