AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中什么叫正样本和负样本 更多内容
  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型 概要 准备工作 导入预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 产品介绍

    收。 R S 4 算法样本收集 由于客户业务场景发生变化导致算法周度平均准确率下降,不满足项目验收标准的,由华为云AI辅助运营工程师采集现场样本数据,输出《xx算法样本数据收集报告》,通过客户评审与验收。 R S 5 算法迭代优化 在完成采集现场样本数据后,由华为云AI辅

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    计算节点管理 同一个空间中的用户,在使用 可信计算 服务时(联邦分析联邦机器学习),需要部署计算节点,接入己方数据,作为可信计算服务的输入,通过执行联邦分析联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeedAccelerate都是针对深度学习训练加速的工具,但是它们的实现方式应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 数据量足够,为什么盘古大模型微调效果仍然不好

    数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本目标任务不一致或者分布差异较大、样本存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。

    来自:帮助中心

    查看更多 →

  • 团队标注的完成验收的各选项表示什么意思?

    团队标注的完成验收的各选项表示什么意思? 全部通过:被驳回的样本,也会通过。 全部驳回:已经通过的样本,需要重新标注,下次验收时重新进行审核。 剩余全部通过:已经驳回的会驳回,其余会自动验收通过。 剩余全部驳回:样本抽中的通过的,不需要标注了,未通过样本未抽中的需要重新标注验收。 父主题:

    来自:帮助中心

    查看更多 →

  • CoT思维链

    果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无

    来自:帮助中心

    查看更多 →

  • 分页查询团队标注任务下的样本列表

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

  • 为什么其他大模型适用的提示词在盘古大模型上效果不佳

    结构语言的理解,因此,提示词包含的关键词、句式语境如果与训练数据的模式接近,模型能够“回忆”并运用已学习的知识指令。 不同模型间效果差异。 由于不同厂商采用的训练策略和数据集差异,同一提示词在不同模型上的效果可能大不相同。由于不同厂商采用的训练策略和数据集差异,同一提示

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩部署模型,不需要代码编写模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 什么是Apdex和Apdex阈值?

    倍的Apdex阈值。 如何计算Apdex APM,Apdex阈值即自定义阈值设置的阈值,应用响应时延即服务时延,Apdex取值范围为0~1,计算公式如下: Apdex=(满意样本*1+可容忍样本*0.5+令人沮丧样本*0)/样本总数 其计算结果表示应用的不同性能状态,即用户对

    来自:帮助中心

    查看更多 →

  • 更新团队标注验收任务状态

    12:图像目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像目标框

    来自:帮助中心

    查看更多 →

  • 数据准备

    息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院的训练样本数目 7366 其他机构的训练样本数目 7366 测试集样本数目 7257 操作步骤 进入 TICS 服务控制台。 在计算节点管理,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点

    来自:帮助中心

    查看更多 →

  • 团队标注的数据分配机制是什么?

    团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    您的标注信息,保证标注多标签的图片,超过2张。 数据集切分后,训练集验证集包含的标签类别不一样。出现这种情况的原因:多标签场景下时,做随机数据切分后,包含某一类标签的样本均被划分到训练集,导致验证集无该标签样本。由于这种情况出现的概率比较小,可尝试重新发布版本来解决。 ModelArts

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 500 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • 准备工作

    Parallelism)是大规模深度学习训练中常用的并行模式,它会在每个进程(设备)或模型并行组维护完整的模型参数,但在每个进程上或模型并行组处理不同的数据。因此,数据并行非常适合大数据量的训练任务。 TP:张量并行也层内并行,通过将网络的权重切分到不同的设备,从而降低

    来自:帮助中心

    查看更多 →

  • 使用TICS可信联邦学习进行联邦建模

    使用TI CS 可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了