AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中l2正则化实现 更多内容
  • 排序策略-离线排序模型

    限制防止过拟合。默认0。 隐向量层L2正则系数 隐向量层使用的L2正则系数,作用如“L2正则项系数”描述。默认0.001。 wide部分L2正则系数 wide层使用的L2正则系数,作用如“L2正则项系数”描述。默认0.001。 最大迭代轮数 模型训练的最大迭代轮数,默认50。

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 初始方法 模型参数的初始方法。 normal:正态分布 平均值:默认0 标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始初始值为

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法的β1和β2参数、batch_size数值等。 其他算法:随机森林的树数量,k-means的cluster数,正则参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 正则式函数

    regexp_replace函数 删除或替换目标字符串符合正则表达式的子串。 删除目标字符串符合正则表达式的子串,返回未被删除的子串。 语法:regexp_replace(expr, regularExpr) 替换目标字符串符合正则表达式的子串,返回被替换后的字符串。 语法:regexp_replace(expr

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    String 算法名称,推荐系统内部定义,必须为LR、FM、FFM、DEEPFM、PIN的某一个。 algorithm_parameters 是 JSON 每个算法有其各自的参数列表,包括初始、最优化、正则项等参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自

    来自:帮助中心

    查看更多 →

  • 更新智能场景内容

    wide_l2_regularization 否 Double wide部分L2正则系数。 最小值:0 最大值:1 structure_l2_regularization 否 Double 结构部分L2正则系数。 最小值:0 最大值:1 表24 AlgorithmSpecifyParameters

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    名称:自定义您的项目名称。 描述:自定义描述您的项目详情,例如垃圾分类。 数据集:下拉选择已下载的数据集(步骤2已成功导入的数据集,默认为下拉数据集列表的第一个数据集)。 输出路径:选择您步骤1创建好的OBS文件夹下的路径,用来存储训练模型等相关文件。 训练规格:根据您的实际需要选择对应的训练规格。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    名称:自定义您的项目名称。 描述:自定义描述您的项目详情,例如垃圾分类。 数据集:下拉选择已下载的数据集(步骤2已成功导入的数据集,默认为下拉数据集列表的第一个数据集)。 输出路径:选择您步骤1创建好的OBS文件夹下的路径,用来存储训练模型等相关文件。 训练规格:根据您的实际需要选择对应的训练规格。

    来自:帮助中心

    查看更多 →

  • 创建智能场景

    wide_l2_regularization 否 Double wide部分L2正则系数。 最小值:0 最大值:1 structure_l2_regularization 否 Double 结构部分L2正则系数。 最小值:0 最大值:1 表25 AlgorithmSpecifyParameters

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现物体检测

    使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构)数据,自动学习数据特征和规律,智能寻优特征&ML模型及参数,准确性甚至达到专家开发者的调优水平 图1 自动学习流程 父主题: Standard功能介绍

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在/etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • 产品概述

    可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视的数据使用流图,提供插件 区块链 对接存储,实现使用过程的可审计、可追溯。 容器部署 容器的多方数据

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现口罩检测

    数据集:下拉选择已下载的数据集(步骤2已成功导入的数据集,默认为下拉数据集列表的第一个数据集)。 输出路径:选择步骤2的3的数据集输出位置。 训练规格:根据您的实际需要选择对应的训练规格。 确认无误后单击右下角“创建项目”可自动跳转至自动学习的运行总览页面。 步骤四:运行工作流 在自动学习的运行总览页

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现声音分类

    使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现文本分类

    使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 产品功能

    对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、H CS O多种部署模式。 可视数据监管 为数据参与方提供可视的数据使用

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了