GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习中gpu作用 更多内容
  • 卸载GPU加速型ECS的GPU驱动

    以Windows Server 2016 数据中心版 64位操作系统为例,介绍GPU加速 云服务器 卸载NVIDIA驱动(驱动版本462.31)的操作步骤。 登录弹性 服务器 。 单击“开始”,打开“控制面板”。 在控制面板,单击“卸载程序”。 图1 单击卸载程序 右键单击要卸载的NVIDIA驱动,单击“卸载/更改”。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习的具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    个人中心页面(我的岗位、我的技能) 在“我的学习”的页面,点击每个具体的课程卡片,进入到课程详情页面。可以按“进行、已完成,必修,选修”过滤,可以按课程标题搜索 图6 我的学习的数据列表页面 课程的详情页面,可以直接开始学习; 每个课程有多个章节,可以开始学习具体的每个章节。目前支持视频、PDF两种格式的课程。

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:U CS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    图1 GPU云产品选型决策指引 目前该功能仅支持华东-上海一。 GPU函数不支持的网段:192.168.64.0/18,192.168.128.0/18,10.192.64.0/18,10.192.128.0/18。 应用场景一:准实时推理场景 特征 在准实时推理应用场景,工作负载具有以下一个或多个特征:

    来自:帮助中心

    查看更多 →

  • 调度概述

    增强型CPU管理策略 GPU调度 CCE为集群GPU异构资源提供调度能力,支持在容器中使用GPU显卡。 功能 描述 参考文档 Kubernetes默认GPU调度 Kubernetes默认GPU调度可以指定Pod申请GPU的数量,支持申请设置为小于1的数量,实现多个Pod共享使用GPU。 使用Kubernetes默认GPU调度

    来自:帮助中心

    查看更多 →

  • CSG文件共享的作用?

    CSG文件共享的作用? 网关部署连通本地网关和CSG控制台,但还不能实现本地数据上下云功能。因此需要用户同时在CSG管理控制台创建文件共享,连接本地网关到对象存储(OBS),用户本地应用系统挂载文件共享,即可通过NFS协议读/写存储在OBS上的数据。 父主题: 概念类

    来自:帮助中心

    查看更多 →

  • 制作用户桌面镜像

    在待制作镜像的云服务器所在行,选择“更多 > 镜像/磁盘 > 创建镜像”。 在“创建私有镜像”页面,按照提示配置参数。 创建方式:系统盘镜像。 选择镜像源:云服务器,选择配置云服务器已关闭的云服务器名称。 名称:按实际操作系统规划,例如:“Workspace_Image_01”。 企业项目:选择资源所属的企业项目,例如:default。

    来自:帮助中心

    查看更多 →

  • 操作用户组

    作用户组 功能介绍 操作用户组,如添加用户、删除用户。 调试 您可以在 API Explorer 调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/groups/{group_id}/actions

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS),且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    yTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍 ModelArts预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 在Notebook中如何查看GPU使用情况

    在Notebook如何查看GPU使用情况 创建Notebook时,当您选择的类型为GPU时,查看GPU使用情况具体操作如下: 登录ModelArts管理控制台,选择“开发空间>Notebook”。 在Notebook列表,单击目标Notebook“操作”列的“打开”,进入“Jupyter”开发页面。

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    check failed. | +----------------------+ 检查失败时,会打印错误码,用户可以根据错误码在所提供的文档链接获取帮助。 父主题: 单独项检查

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了