GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习中gpu作用 更多内容
  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    h5"。 参数说明 表1 参数说明 参数 是否必选 说明 field_name 是 数据在数据流的字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • GPU加速型

    GPU加速 云服务器 包括G系列和P系列两类。其中: G系列:图形加速型弹性 服务器 ,适合于3D动画渲染、CAD等。 P系列:计算加速型或推理加速型弹性云服务器,适合于深度学习、科学计算、CAE等。 为了保障GPU加速云服务器高可靠、高可用和高性能,该类型云服务器的公共镜像中会默认预置带GPU监控的CES

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    。 在Kubernetes的集群,“弹性伸缩”一般涉及到扩缩容Pod个数以及Node个数。Pod代表应用的实例数(每个Pod包含一个或多个容器),当业务高峰的时候需要扩容应用的实例个数。所有的Pod都是运行在某一个节点(虚机或裸机)上,当集群没有足够多的节点来调度新扩容的Po

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 系统登录 在浏览器输入https://engine.piesat.cn/ai/samplelabel/#/链接,进入系统登录界面,如下图所示。 图1 系统登录界面1 图2 系统登录界面2 系统默认登录方式为密码登录。输入手机号码/邮箱/帐号、登录密码、字符验证码,单击

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在 /etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 负载伸缩概述

    时,触发工作负载扩缩。 图1 负载伸缩策略机制 约束与限制 U CS 负载伸缩策略只能作用于无状态工作负载。若您需要了解不同类型工作负载的区别,请参见工作负载。 UCS负载伸缩策略只专注于扩缩工作负载的Pod数量,若您需要将扩展出的Pod调度至特定集群,请按需配置工作负载的调度策略,具体操作请参见调度策略。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    如何在代码打印GPU使用信息 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。 pip install gpustat

    来自:帮助中心

    查看更多 →

  • 约束与限制

    基于华为云的安全性带来的限制,CCI目前还不支持KubernetesHostPath、DaemonSet等功能,具体如下表所示。 不支持的功能 说明 推荐替代方案 HostPath 挂载本地宿主机文件到容器 使用云盘或者SFS文件系统 HostNetwork 将宿主机端口映射到容器上

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 操作用户

    _id}/random-password接口)。 调试 您可以在 API Explorer 调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/users/{user_id}/actions

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    登录BCE控制台,在左侧导航栏单击“资源池管理”。 在“共享资源池”页签,单击“创建共享资源池”。 图1 创建共享资源池 在“创建共享资源池”页面,填写基础信息,并选择资源池所在的命名空间,具体参数如表1所示。 表1 创建共享资源池 参数 说明 资源池名称 填写资源池名称,默认以“bce-”为前缀。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    请按照本节的操作顺序在算法工程完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • GPU函数管理

    GPU函数管理 Serverless GPU使用介绍 部署方式 函数模式

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了